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Notation

The reader might find it helpful to refer back to this notation section.

• We slightly abuse notation and let [K] denote the set {0, 1, 2, . . .K − 1} for an integer K.

• We let ∆(X ) denote the set of probability distribution over the set X .

• For a vector v, we let (v)2,
√
v, and |v| be the component-wise square, square root, and absolute value operations.

• Inequalities between vectors are elementwise, e.g. for vectors v, v′, we say v ≤ v′, if the inequality holds
elementwise.

• For a vector v, we refer to the j-th component of this vector by either v(j) or [v]j

• Denote the variance of any real valued f under a distribution D as:

VarD(f) := Ex∼D[f(x)2]− (Ex∼D[f(x)])2

• We overload notation where, for a distribution µ over S, we write:

V π(µ) = Es∼µ [V π(s)] .

• It is helpful to overload notation and let P also refer to a matrix of size (S · A) × S where the entry P(s,a),s′

is equal to P (s′|s, a). We also will define Pπ to be the transition matrix on state-action pairs induced by a
deterministic policy π. In particular, Pπ(s,a),(s′,a′) = P (s′|s, a) if a′ = π(s′) and Pπ(s,a),(s′,a′) = 0 if a′ 6= π(s′).
With this notation,

Qπ = r + γPV π

Qπ = r + γPπQπ

Qπ = (I − γPπ)−1r

• For a vector Q ∈ R|S×A|, denote the greedy policy and value as:

πQ(s) := argmaxa∈AQ(s, a)

VQ(s) := max
a∈A

Q(s, a). .

• For a vector Q ∈ R|S×A|, the Bellman optimality operator T : R|S×A| → R|S×A| is defined as:

T Q := r + γPVQ . (0.1)

• For a vector x and a matrix M , unless explicitly stated otherwise, we let ‖x‖ and ‖M‖ denote the Euclidean
and spectral norms, respectively. We use the notation ‖x‖M =

√
x>Mx, where x and M are assumed to be of

appropriate size.
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Fundamentals
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Chapter 1

Markov Decision Processes

1.1 Discounted (Infinite-Horizon) Markov Decision Processes

In reinforcement learning, the interactions between the agent and the environment are often described by an infinite-
horizon, discounted Markov Decision Process (MDP) M = (S,A, P, r, γ, µ), specified by:

• A state space S , which may be finite or infinite. For mathematical convenience, we will assume that S is finite
or countably infinite.

• An action space A, which also may be discrete or infinite. For mathematical convenience, we will assume that
A is finite.

• A transition function P : S ×A → ∆(S), where ∆(S) is the space of probability distributions over S (i.e., the
probability simplex). P (s′|s, a) is the probability of transitioning into state s′ upon taking action a in state s.
We use Ps,a to denote the vector P (·

∣∣ s, a).

• A reward function r : S × A → [0, 1]. r(s, a) is the immediate reward associated with taking action a in state
s. More generally, the r(s, a) could be a random variable (where the distribution depends on s, a). While we
largely focus on the case where r(s, a) is deterministic, the extension to methods with stochastic rewards are
often straightforward.

• A discount factor γ ∈ [0, 1), which defines a horizon for the problem.

• An initial state distribution µ ∈ ∆(S), which specifies how the initial state s0 is generated.

In many cases, we will assume that the initial state is fixed at s0, i.e. µ is a distribution supported only on s0.

1.1.1 The objective, policies, and values

Policies. In a given MDPM = (S,A, P, r, γ, µ), the agent interacts with the environment according to the following
protocol: the agent starts at some state s0 ∼ µ; at each time step t = 0, 1, 2, . . ., the agent takes an action at ∈ A,
obtains the immediate reward rt = r(st, at), and observes the next state st+1 sampled according to st+1 ∼ P (·|st, at).
The interaction record at time t,

τt = (s0, a0, r0, s1, . . . , st, at, rt),
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is called a trajectory, which includes the observed state at time t.

In the most general setting, a policy specifies a decision-making strategy in which the agent chooses actions adaptively
based on the history of observations; precisely, a policy is a (possibly randomized) mapping from a trajectory to an
action, i.e. π : H → ∆(A) where H is the set of all possible trajectories (of all lengths) and ∆(A) is the space of
probability distributions over A. A stationary policy π : S → ∆(A) specifies a decision-making strategy in which
the agent chooses actions based only on the current state, i.e. at ∼ π(·|st). A deterministic, stationary policy is of the
form π : S → A.

Values. We now define values for (general) policies. For a fixed policy and a starting state s0 = s, we define the
value function V πM : S → R as the discounted sum of future rewards

V πM (s) = E
[ ∞∑
t=0

γtr(st, at)
∣∣ π, s0 = s

]
.

where expectation is with respect to the randomness of the trajectory, that is, the randomness in state transitions and
the stochasticity of π. Here, since r(s, a) is bounded between 0 and 1, we have 0 ≤ V πM (s) ≤ 1/(1− γ).

Similarly, the action-value (or Q-value) function QπM : S ×A → R is defined as

QπM (s, a) = E
[ ∞∑
t=0

γtr(st, at)
∣∣ π, s0 = s, a0 = a

]
.

and QπM (s, a) is also bounded by 1/(1− γ).

Goal. Given a state s, the goal of the agent is to find a policy π that maximizes the value, i.e. the optimization
problem the agent seeks to solve is:

max
π

V πM (s) (0.1)

where the max is over all (possibly non-stationary and randomized) policies. As we shall see, there exists a determin-
istic and stationary policy which is simultaneously optimal for all starting states s.

We drop the dependence on M and write V π when it is clear from context.

Example 1.1 (Navigation). Navigation is perhaps the simplest to see example of RL. The state of the agent is their
current location. The four actions might be moving 1 step along each of east, west, north or south. The transitions
in the simplest setting are deterministic. Taking the north action moves the agent one step north of their location,
assuming that the size of a step is standardized. The agent might have a goal state g they are trying to reach, and the
reward is 0 until the agent reaches the goal, and 1 upon reaching the goal state. Since the discount factor γ < 1, there
is incentive to reach the goal state earlier in the trajectory. As a result, the optimal behavior in this setting corresponds
to finding the shortest path from the initial to the goal state, and the value function of a state, given a policy is γd,
where d is the number of steps required by the policy to reach the goal state.

Example 1.2 (Conversational agent). This is another fairly natural RL problem. The state of an agent can be the
current transcript of the conversation so far, along with any additional information about the world, such as the context
for the conversation, characteristics of the other agents or humans in the conversation etc. Actions depend on the
domain. In the most basic form, we can think of it as the next statement to make in the conversation. Sometimes,
conversational agents are designed for task completion, such as travel assistant or tech support or a virtual office
receptionist. In these cases, there might be a predefined set of slots which the agent needs to fill before they can find a
good solution. For instance, in the travel agent case, these might correspond to the dates, source, destination and mode
of travel. The actions might correspond to natural language queries to fill these slots.
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In task completion settings, reward is naturally defined as a binary outcome on whether the task was completed or not,
such as whether the travel was successfully booked or not. Depending on the domain, we could further refine it based
on the quality or the price of the travel package found. In more generic conversational settings, the ultimate reward is
whether the conversation was satisfactory to the other agents or humans, or not.

Example 1.3 (Strategic games). This is a popular category of RL applications, where RL has been successful in
achieving human level performance in Backgammon, Go, Chess, and various forms of Poker. The usual setting consists
of the state being the current game board, actions being the potential next moves and reward being the eventual win/loss
outcome or a more detailed score when it is defined in the game. Technically, these are multi-agent RL settings, and,
yet, the algorithms used are often non-multi-agent RL algorithms.

1.1.2 Bellman Consistency Equations for Stationary Policies

Stationary policies satisfy the following consistency conditions:

Lemma 1.4. Suppose that π is a stationary policy. Then V π and Qπ satisfy the following Bellman consistency
equations: for all s ∈ S, a ∈ A,

V π(s) = Qπ(s, π(s)).

Qπ(s, a) = r(s, a) + γEa∼π(·|s),s′∼P (·|s,a)

[
V π(s′)

]
.

We leave the proof as an exercise to the reader.

It is helpful to view V π as vector of length |S| and Qπ and r as vectors of length |S| · |A|. We overload notation and
let P also refer to a matrix of size (|S| · |A|)× |S| where the entry P(s,a),s′ is equal to P (s′|s, a).

We also will define Pπ to be the transition matrix on state-action pairs induced by a stationary policy π, specifically:

Pπ(s,a),(s′,a′) := P (s′|s, a)π(a′|s′).
In particular, for deterministic policies we have:

Pπ(s,a),(s′,a′) :=

{
P (s′|s, a) if a′ = π(s′)

0 if a′ 6= π(s′)

With this notation, it is straightforward to verify:

Qπ = r + γPV π

Qπ = r + γPπQπ .

Corollary 1.5. Suppose that π is a stationary policy. We have that:

Qπ = (I − γPπ)−1r (0.2)

where I is the identity matrix.

Proof: To see that the I − γPπ is invertible, observe that for any non-zero vector x ∈ R|S||A|,

‖(I − γPπ)x‖∞ = ‖x− γPπx‖∞
≥ ‖x‖∞ − γ‖Pπx‖∞ (triangule inequality for norms)
≥ ‖x‖∞ − γ‖x‖∞ (each element of Pπx is an average of x)
= (1− γ)‖x‖∞ > 0 (γ < 1, x 6= 0)

which implies I − γPπ is full rank.

The following is also a helpful lemma:

7



Lemma 1.6. We have that:

[(1− γ)(I − γPπ)−1](s,a),(s′,a′) = (1− γ)

∞∑
t=0

γtPπ(st = s′, at = a′|s0 = s, a0 = a)

so we can view the (s, a)-th row of this matrix as an induced distribution over states and actions when following π
after starting with s0 = s and a0 = a.

We leave the proof as an exercise to the reader.

1.1.3 Bellman Optimality Equations

A remarkable and convenient property of MDPs is that there exists a stationary and deterministic policy that simulta-
neously maximizes V π(s) for all s ∈ S. This is formalized in the following theorem:

Theorem 1.7. Let Π be the set of all non-stationary and randomized policies. Define:

V ?(s) := sup
π∈Π

V π(s)

Q?(s, a) := sup
π∈Π

Qπ(s, a).

which is finite since V π(s) and Qπ(s, a) are bounded between 0 and 1/(1− γ).

There exists a stationary and deterministic policy π such that for all s ∈ S and a ∈ A,

V π(s) = V ?(s)

Qπ(s, a) = Q?(s, a).

We refer to such a π as an optimal policy.

Proof: For any π ∈ Π and for any time t, π specifies a distribution over actions conditioned on the history of observa-
tions; here, we write π(At = a|S0 = s0, A0 = a0, R0 = r0, . . . St−1 = st−1, At−1 = at−1, Rt−1 = rt−1, St = st)
as the probability that π selects action a at time t given an observed history s0, a0, r0, . . . st−1, at−1, rt−1, st. For
the purposes of this proof, it is helpful to formally let St, At and Rt denote random variables, which will dis-
tinguish them from outcomes, which is denoted by lower case variables. First, let us show that conditioned on
(S0, A0, R0, S1) = (s, a, r, s′), the maximum future discounted value, from time 1 onwards, is not a function of
s, a, r. More precisely, we seek to show that:

sup
π∈Π

E
[ ∞∑
t=1

γtr(st, at)
∣∣ π, (S0, A0, R0, S1) = (s, a, r, s′)

]
= γV ?(s′) (0.3)

For any policy π, define an “offset” policy π(s,a,r), which is the policy that chooses actions on a trajectory τ according
to the same distribution that π chooses actions on the trajectory (s, a, r, τ). Precisely, for all t, define

π(s,a,r)(At = a|S0 = s0, A0 = a0, R0 = r0, . . . St = st)

:= π(At+1 = a|S0 = s,A0 = a,R0 = r, S1 = s0, A1 = a0, R1 = r0, . . . St+1 = st).

By the Markov property, we have that:

E
[ ∞∑
t=1

γtr(st, at)
∣∣ π, (S0, A0, R0, S1) = (s, a, r, s′)

]
= γE

[ ∞∑
t=0

γtr(st, at)
∣∣ π(s,a,r), S0 = s′

]
= γV π(s,a,r)(s′),

8



where the first equality follows from a change of variables on the time index, along with the definition of the policy
π(s,a,r). Also, we have that, for all (s, a, r), that the set {π(s,a,r)|π ∈ Π} is equal to Π itself, by the definition of Π
and π(s,a,r). This implies:

sup
π∈Π

E
[ ∞∑
t=1

γtr(st, at)
∣∣ π, (S0, A0, R0, S1) = (s, a, r, s′)

]
= γ · sup

π∈Π
V π(s,a,r)(s′) = γ · sup

π∈Π
V π(s′) = γV ?(s′),

thus proving Equation 0.3.

We now show the deterministic and stationary policy

π̃(s) = sup
a∈A

E
[
r(s, a) + γV ?(s1)

∣∣ (S0, A0) = (s, a)
]

is optimal, i.e. that V π̃(s) = V ?(s). For this, we have that:

V ?(s0) = sup
π∈Π

E
[
r(s0, a0) +

∞∑
t=1

γtr(st, at)
]

(a)
= sup

π∈Π
E
[
r(s0, a0) + E

[ ∞∑
t=1

γtr(st, at)
∣∣ π, (S0, A0, R0, S1) = (s0, a0, r0, s1)

]]
≤ sup
π∈Π

E
[
r(s0, a0) + sup

π′∈Π
E
[ ∞∑
t=1

γtr(st, at)
∣∣ π′, (S0, A0, R0, S1) = (s0, a0, r0, s1)

]]
(b)
= sup

π∈Π
E
[
r(s0, a0) + γV ?(s1)

]
= sup
a0∈A

E
[
r(s0, a0) + γV ?(s1)

]
(c)
= E

[
r(s0, a0) + γV ?(s1)

∣∣ π̃].
where step (a) uses the law of iterated expectations; step (b) uses Equation 0.3; and step (c) follows from the definition
of π̃. Applying the same argument recursively leads to:

V ?(s0) ≤ E
[
r(s0, a0) + γV ?(s1)

∣∣ π̃] ≤ E
[
r(s0, a0) + γr(s1, a1) + γ2V ?(s2)

∣∣ π̃] ≤ . . . ≤ V π̃(s0).

Since V π̃(s) ≤ supπ∈Π V
π(s) = V ?(s) for all s, we have that V π̃ = V ?, which completes the proof of the first claim.

For the same policy π̃, an analogous argument can be used prove the second claim.

This shows that we may restrict ourselves to using stationary and deterministic policies without any loss in perfor-
mance. The following theorem, also due to [Bellman, 1956], gives a precise characterization of the optimal value
function.

Theorem 1.8 (Bellman optimality equations). We say that a vector Q ∈ R|S||A| satisfies the Bellman optimality
equations if:

Q(s, a) = r(s, a) + γEs′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)

]
.

For any Q ∈ R|S||A|, we have that Q = Q? if and only if Q satisfies the Bellman optimality equations. Furthermore,
the deterministic policy defined by π(s) ∈ argmaxa∈AQ

?(s, a) is an optimal policy (where ties are broken in some
arbitrary manner).
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Before we prove this claim, we will provide a few definitions. Let πQ denote the greedy policy with respect to a vector
Q ∈ R|S||A|, i.e

πQ(s) := argmaxa∈AQ(s, a) .

where ties are broken in some arbitrary manner. With this notation, by the above theorem, the optimal policy π? is
given by:

π? = πQ? .

Let us also use the following notation to turn a vector Q ∈ R|S||A| into a vector of length |S|.

VQ(s) := max
a∈A

Q(s, a).

The Bellman optimality operator TM : R|S||A| → R|S||A| is defined as:

T Q := r + γPVQ . (0.4)

This allows us to rewrite the Bellman optimality equation in the concise form:

Q = T Q,

and, so, the previous theorem states that Q = Q? if and only if Q is a fixed point of the operator T .

Proof: Let us begin by showing that:
V ?(s) = max

a
Q?(s, a). (0.5)

Let π? be an optimal stationary and deterministic policy, which exists by Theorem 1.7. Consider the policy which
takes action a and then follows π?. Due to that V ?(s) is the maximum value over all non-stationary policies (as shown
in Theorem 1.7),

V ?(s) ≥ Qπ?(s, a) = Q?(s, a),

which shows that V ?(s) ≥ maxaQ
?(s, a) since a is arbitrary in the above. Also, by Lemma 1.4 and Theorem 1.7,

V ?(s) = V π
?

(s) = Qπ
?

(s, π?(s)) ≤ max
a

Qπ
?

(s, a) = max
a

Q?(s, a),

which proves our claim since we have upper and lower bounded V ?(s) by maxaQ
?(s, a).

We first show sufficiency, i.e. that Q? (the state-action value of an optimal policy) satisfies Q? = T Q?. Now for all
actions a ∈ A, we have:

Q?(s, a) = max
π

Qπ(s, a) = r(s, a) + γmax
π

Es′∼P (·|s,a)[V
π(s′)]

= r(s, a) + γEs′∼P (·|s,a)[V
?(s′)]

= r(s, a) + γEs′∼P (·|s,a)[max
a′

Q?(s′, a′)].

Here, the second equality follows from Theorem 1.7 and the final equality follows from Equation 0.5. This proves
sufficiency.

For the converse, suppose Q = T Q for some Q. We now show that Q = Q?. Let π = πQ. That Q = T Q implies
that Q = r + γPπQ, and so:

Q = (I − γPπ)−1r = Qπ

using Corollary 1.5 in the last step. In other words, Q is the action value of the policy πQ. Also, let us show that
(Pπ − Pπ′)Qπ ≥ 0. To see this, observe that:

[(Pπ − Pπ′)Qπ]s,a = Es′∼P (·|s,a)[Q
π(s′, π(s′))−Qπ(s′, π′(s′))] ≥ 0
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where the last step uses that π = πQ. Now observe for any other deterministic and stationary policy π′:

Q−Qπ′ = Qπ −Qπ′

= Qπ − (I − γPπ′)−1r

= (I − γPπ′)−1((I − γPπ′)− (I − γPπ))Qπ

= γ(I − γPπ′)−1(Pπ − Pπ′)Qπ
≥ 0,

where the last step follows since we have shown (Pπ − Pπ′)Qπ ≥ 0 and since (1− γ)(I − γPπ′)−1 is a matrix with
all positive entries (see Lemma 1.6). Thus, Qπ = Q ≥ Qπ

′
for all deterministic and stationary π′, which shows that

π is an optimal policy. Thus, Q = Qπ = Q?, using Theorem 1.7. This completes the proof.

1.2 Finite-Horizon Markov Decision Processes

In some cases, it is natural to work with finite-horizon (and time-dependent) Markov Decision Processes (see the dis-
cussion below). Here, a finite horizon, time-dependent Markov Decision Process (MDP)M = (S,A, {P}h, {r}h, H, µ)
is specified as follows:

• A state space S , which may be finite or infinite.

• An action space A, which also may be discrete or infinite.

• A time-dependent transition function Ph : S ×A → ∆(S), where ∆(S) is the space of probability distributions
over S (i.e., the probability simplex). Ph(s′|s, a) is the probability of transitioning into state s′ upon taking
action a in state s at time step h. Note that the time-dependent setting generalizes the stationary setting where
all steps share the same transition.

• A time-dependent reward function rh : S ×A → [0, 1]. rh(s, a) is the immediate reward associated with taking
action a in state s at time step h.

• A integer H which defines the horizon of the problem.

• An initial state distribution µ ∈ ∆(S), which species how the initial state s0 is generated.

Here, for a policy π, a state s, and h ∈ {0, . . . H − 1}, we define the value function V πh : S → R as

V πh (s) = E
[H−1∑
t=h

rh(st, at)
∣∣ π, sh = s

]
,

where again the expectation is with respect to the randomness of the trajectory, that is, the randomness in state tran-
sitions and the stochasticity of π. Similarly, the state-action value (or Q-value) function Qπh : S × A → R is defined
as

Qπh(s, a) = E
[H−1∑
t=h

rh(st, at)
∣∣ π, sh = s, ah = a

]
.

We also use the notation V π(s) = V π0 (s).

Again, given a state s, the goal of the agent is to find a policy π that maximizes the value, i.e. the optimization problem
the agent seeks to solve is:

max
π

V π(s) (0.6)

where recall that V π(s) = V π0 (s).
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Theorem 1.9. (Bellman optimality equations) Define

Q?h(s, a) = sup
π∈Π

Qπh(s, a)

where the sup is over all non-stationary and randomized policies. Suppose that QH = 0. We have that Qh = Q?h for
all h ∈ [H] if and only if for all h ∈ [H],

Qh(s, a) = rh(s, a) + Es′∼Ph(·|s,a)

[
max
a′∈A

Qh+1(s′, a′)

]
. (0.7)

Furthermore, π(s, h) = argmaxa∈AQ
?
h(s, a) is an optimal policy.

We leave the proof as an exercise to the reader.

Discussion: Stationary MDPs vs Time-Dependent MDPs For the purposes of this book, it is natural for us to
study both of these models, where we typically assume stationary dynamics in the infinite horizon setting and time-
dependent dynamics in the finite-horizon setting. From a theoretical perspective, the finite horizon, time-dependent
setting is often more amenable to analysis, where optimal statistical rates often require simpler arguments. However,
we should note that from a practical perspective, time-dependent MDPs are rarely utilized because they lead to policies
and value functions that areO(H) larger (to store in memory) than those in the stationary setting. In practice, we often
incorporate temporal information directly into the definition of the state, which leads to more compact value functions
and policies (when coupled with function approximation methods, which attempt to represent both the values and
policies in a more compact form).

1.3 Computational Complexity

This section will be concerned with computing an optimal policy, when the MDP M = (S,A, P, r, γ) is known; this
can be thought of as the solving the planning problem. While much of this book is concerned with statistical limits,
understanding the computational limits can be informative. We will consider algorithms which give both exact and
approximately optimal policies. In particular, we will be interested in polynomial time (and strongly polynomial time)
algorithms.

Suppose that (P, r, γ) in our MDP M is specified with rational entries. Let L(P, r, γ) denote the total bit-size required
to specify M , and assume that basic arithmetic operations +,−,×,÷ take unit time. Here, we may hope for an
algorithm which (exactly) returns an optimal policy whose runtime is polynomial in L(P, r, γ) and the number of
states and actions.

More generally, it may also be helpful to understand which algorithms are strongly polynomial. Here, we do not want
to explicitly restrict (P, r, γ) to be specified by rationals. An algorithm is said to be strongly polynomial if it returns
an optimal policy with runtime that is polynomial in only the number of states and actions (with no dependence on
L(P, r, γ)).

The first two subsections will cover classical iterative algorithms that compute Q?, and then we cover the linear
programming approach.

1.3.1 Value Iteration

Perhaps the simplest algorithm for discounted MDPs is to iteratively apply the fixed point mapping: starting at some
Q, we iteratively apply T :

Q← T Q ,
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Value Iteration Policy Iteration LP-Algorithms

Poly? |S|2|A|L(P,r,γ) log 1
1−γ

1−γ (|S|3 + |S|2|A|)L(P,r,γ) log 1
1−γ

1−γ |S|3|A|L(P, r, γ)

Strongly Poly? 7 (|S|3 + |S|2|A|) ·min

{
|A||S|
|S| ,

|S|2|A| log
|S|2
1−γ

1−γ

}
|S|4|A|4 log |S|1−γ

Table 0.1: Computational complexities of various approaches (we drop universal constants). Polynomial time algo-
rithms depend on the bit complexity, L(P, r, γ), while strongly polynomial algorithms do not. Note that only for a
fixed value of γ are value and policy iteration polynomial time algorithms; otherwise, they are not polynomial time
algorithms. Similarly, only for a fixed value of γ is policy iteration a strongly polynomial time algorithm. In contrast,
the LP-approach leads to both polynomial time and strongly polynomial time algorithms; for the latter, the approach
is an interior point algorithm. See text for further discussion, and Section 1.6 for references. Here, |S|2|A| is the
assumed runtime per iteration of value iteration, and |S|3 + |S|2|A| is the assumed runtime per iteration of policy
iteration (note that for this complexity we would directly update the values V rather than Q values, as described in the
text); these runtimes are consistent with assuming cubic complexity for linear system solving.

This is algorithm is referred to as Q-value iteration.

Lemma 1.10. (contraction) For any two vectors Q,Q′ ∈ R|S||A|,

‖T Q− T Q′‖∞ ≤ γ‖Q−Q′‖∞

Proof: First, let us show that for all s ∈ S, |VQ(s)−VQ′(s)| ≤ maxa∈A |Q(s, a)−Q′(s, a)|. Assume VQ(s) > VQ′(s)
(the other direction is symmetric), and let a be the greedy action for Q at s. Then

|VQ(s)− VQ′(s)| = Q(s, a)−max
a′∈A

Q′(s, a′) ≤ Q(s, a)−Q′(s, a) ≤ max
a∈A
|Q(s, a)−Q′(s, a)|.

Using this,

‖T Q− T Q′‖∞ = γ‖PVQ − PVQ′‖∞
= γ‖P (VQ − VQ′)‖∞
≤ γ‖VQ − VQ′‖∞
= γmax

s
|VQ(s)− VQ′(s)|

≤ γmax
s

max
a
|Q(s, a)−Q′(s, a)|

= γ‖Q−Q′‖∞

where the first inequality uses that each element of P (VQ − VQ′) is a convex average of VQ − VQ′ and the second
inequality uses our claim above.

The following result bounds the sub-optimality of the greedy policy itself, based on the error in Q-value function.

Lemma 1.11. (Q-Error Amplification) For any vector Q ∈ R|S||A|,

V πQ ≥ V ? − 2‖Q−Q?‖∞
1− γ 1,

where 1 denotes the vector of all ones.
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Proof: Fix state s and let a = πQ(s). We have:

V ?(s)− V πQ(s) = Q?(s, π?(s))−QπQ(s, a)

= Q?(s, π?(s))−Q?(s, a) +Q?(s, a)−QπQ(s, a)

= Q?(s, π?(s))−Q?(s, a) + γEs′∼P (·|s,a)[V
?(s′)− V πQ(s′)]

≤ Q?(s, π?(s))−Q(s, π?(s)) +Q(s, a)−Q?(s, a)

+γEs′∼P (s,a)[V
?(s′)− V πQ(s′)]

≤ 2‖Q−Q?‖∞ + γ‖V ? − V πQ‖∞.

where the first inequality uses Q(s, π?(s)) ≤ Q(s, πQ(s)) = Q(s, a) due to the definition of πQ.

Theorem 1.12. (Q-value iteration convergence). Set Q(0) = 0. For k = 0, 1, . . ., suppose:

Q(k+1) = T Q(k)

Let π(k) = πQ(k) . For k ≥
log 2

(1−γ)2ε
1−γ ,

V π
(k) ≥ V ? − ε1 .

Proof: Since ‖Q?‖∞ ≤ 1/(1− γ), Q(k) = T kQ(0) and Q? = T Q?, Lemma 1.10 gives

‖Q(k) −Q?‖∞ = ‖T kQ(0) − T kQ?‖∞ ≤ γk‖Q(0) −Q?‖∞ = (1− (1− γ))k‖Q?‖∞ ≤
exp(−(1− γ)k)

1− γ .

The proof is completed with our choice of k and using Lemma 1.11.

Iteration complexity for an exact solution. With regards to computing an exact optimal policy, when the gap
between the current objective value and the optimal objective value is smaller than 2−L(P,r,γ), then the greedy policy
will be optimal. This leads to claimed complexity in Table 0.1. Value iteration is not strongly polynomial algorithm
due to that, in finite time, it may never return the optimal policy.

1.3.2 Policy Iteration

The policy iteration algorithm, for discounted MDPs, starts from an arbitrary policy π0, and repeats the following
iterative procedure: for k = 0, 1, 2, . . .

1. Policy evaluation. Compute Qπk

2. Policy improvement. Update the policy:

πk+1 = πQπk

In each iteration, we compute the Q-value function of πk, using the analytical form given in Equation 0.2, and update
the policy to be greedy with respect to this newQ-value. The first step is often called policy evaluation, and the second
step is often called policy improvement.

Lemma 1.13. We have that:

1. Qπk+1 ≥ T Qπk ≥ Qπk
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2. ‖Qπk+1 −Q?‖∞ ≤ γ‖Qπk −Q?‖∞

Proof: First let us show that T Qπk ≥ Qπk . Note that the policies produced in policy iteration are always deterministic,
so V πk(s) = Qπk(s, πk(s)) for all iterations k and states s. Hence,

T Qπk(s, a) = r(s, a) + γEs′∼P (·|s,a)[max
a′

Qπk(s′, a′)]

≥ r(s, a) + γEs′∼P (·|s,a)[Q
πk(s′, πk(s′))] = Qπk(s, a).

Now let us prove that Qπk+1 ≥ T Qπk . First, let us see that Qπk+1 ≥ Qπk :

Qπk = r + γPπkQπk ≤ r + γPπk+1Qπk ≤
∞∑
t=0

γt(Pπk+1)tr = Qπk+1 .

where we have used that πk+1 is the greedy policy in the first inequality and recursion in the second inequality. Using
this,

Qπk+1(s, a) = r(s, a) + γEs′∼P (·|s,a)[Q
πk+1(s′, πk+1(s′))]

≥ r(s, a) + γEs′∼P (·|s,a)[Q
πk(s′, πk+1(s′))]

= r(s, a) + γEs′∼P (·|s,a)[max
a′

Qπk(s′, a′)] = T Qπk(s, a)

which completes the proof of the first claim.

For the second claim,

‖Q? −Qπk+1‖∞ ≤ ‖Q? − T Qπk‖∞ = ‖T Q? − T Qπk‖∞ ≤ γ‖Q? −Qπk‖∞

where we have used that Q? ≥ Qπk+1 ≥ T Qπk in second step and the contraction property of T (see Lemma 1.10) in
the last step.

With this lemma, a convergence rate for the policy iteration algorithm immediately follows.

Theorem 1.14. (Policy iteration convergence). Let π0 be any initial policy. For k ≥ log 1
(1−γ)ε

1−γ , the k-th policy in
policy iteration has the following performance bound:

Qπk ≥ Q? − ε1 .

Iteration complexity for an exact solution. With regards to computing an exact optimal policy, it is clear from the
previous results that policy iteration is no worse than value iteration. However, with regards to obtaining an exact
solution MDP that is independent of the bit complexity, L(P, r, γ), improvements are possible (and where we assume
basic arithmetic operations on real numbers are order one cost). Naively, the number of iterations of policy iterations
is bounded by the number of policies, namely |A||S|; here, a small improvement is possible, where the number of

iterations of policy iteration can be bounded by |A|
|S|

|S| . Remarkably, for a fixed value of γ, policy iteration can be

show to be a strongly polynomial time algorithm, where policy iteration finds an exact policy in at most
|S|2|A| log

|S|2
1−γ

1−γ
iterations. See Table 0.1 for a summary, and Section 1.6 for references.
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1.3.3 Value Iteration for Finite Horizon MDPs

Let us now specify the value iteration algorithm for finite-horizon MDPs. For the finize-horizon setting, it turns out
that the analogues of value iteration and policy iteration lead to identical algorithms. The value iteration algorithm is
specified as follows:

1. Set QH−1(s, a) = rH−1(s, a).

2. For h = H − 2, . . . 0, set:

Qh(s, a) = rh(s, a) + γEs′∼Ph(·|s,a)

[
max
a′∈A

Qh+1(s′, a′)

]
.

By Theorem 1.9, it follows that Qh(s, a) = Q?h(s, a) and that π(s, h) = argmaxa∈AQ
?
h(s, a) is an optimal policy.

1.3.4 The Linear Programming Approach

It is helpful to understand an alternative approach to finding an optimal policy for a known MDP. With regards to
computation, consider the setting where our MDPM = (S,A, P, r, γ, µ) is known and P , r, and γ are all specified by
rational numbers. Here, from a computational perspective, the previous iterative algorithms are, strictly speaking, not
polynomial time algorithms, due to that they depend polynomially on 1/(1 − γ), which is not polynomial in the de-
scription length of the MDP . In particular, note that any rational value of 1−γ may be specified with onlyO(log 1

1−γ )
bits of precision. In this context, we may hope for a fully polynomial time algorithm, when given knowledge of the
MDP, which would have a computation time which would depend polynomially on the description length of the MDP
M , when the parameters are specified as rational numbers. We now see that the LP approach provides a polynomial
time algorithm.

The Primal LP and A Polynomial Time Algorithm

Consider the following optimization problem with variables V ∈ R|S|:

min
∑
s

µ(s)V (s)

subject to V (s) ≥ r(s, a) + γ
∑
s′

P (s′|s, a)V (s′) ∀a ∈ A, s ∈ S

Provided that µ has full support, then the optimal value function V ?(s) is the unique solution to this linear program.
With regards to computation time, linear programming approaches only depend on the description length of the coeffi-
cients in the program, due to that this determines the computational complexity of basic additions and multiplications.
Thus, this approach will only depend on the bit length description of the MDP, when the MDP is specified by rational
numbers.

Computational complexity for an exact solution. Table 0.1 shows the runtime complexity for the LP approach,
where we assume a standard runtime for solving a linear program. The strongly polynomial algorithm is an interior
point algorithm. See Section 1.6 for references.
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Policy iteration and the simplex algorithm. It turns out that the policy iteration algorithm is actually the simplex
method with block pivot. While the simplex method, in general, is not a strongly polynomial time algorithm, the
policy iteration algorithm is a strongly polynomial time algorithm, provided we keep the discount factor fixed. See
[Ye, 2011].

The Dual LP and the State-Action Polytope

For a fixed (possibly stochastic) policy π, let us define a visitation measure over states and actions induced by following
π after starting at s0. Precisely, define this distribution, dπs0 , as follows:

dπs0(s, a) := (1− γ)

∞∑
t=0

γtPrπ(st = s, at = a|s0) (0.8)

where Prπ(st = s, at = a|s0) is the probability that st = s and at = a, after starting at state s0 and following π
thereafter. It is straightforward to verify that dπs0 is a distribution over S ×A. We also overload notation and write:

dπµ(s, a) = Es0∼µ
[
dπs0(s, a)

]
.

for a distribution µ over S. Recall Lemma 1.6 provides a way to easily compute dπµ(s, a) through an appropriate
vector-matrix multiplication.

It is straightforward to verify that dπµ satisfies, for all states s ∈ S:∑
a

dπµ(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P (s|s′, a′)dπµ(s′, a′).

Let us define the state-action polytope as follows:

Kµ := {d| d ≥ 0 and
∑
a

d(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′)}

We now see that this set precisely characterizes all state-action visitation distributions.

Proposition 1.15. We have that Kµ is equal to the set of all feasible state-action distributions, i.e. d ∈ Kµ if and only
if there exists a stationary (and possibly randomized) policy π such that dπµ = d.

With respect the variables d ∈ R|S|·|A|, the dual LP formulation is as follows:

max
1

1− γ
∑
s,a

dµ(s, a)r(s, a)

subject to d ∈ Kµ

Note thatKµ is itself a polytope, and one can verify that this is indeed the dual of the aforementioned LP. This approach
provides an alternative approach to finding an optimal solution.

If d? is the solution to this LP, and provided that µ has full support, then we have that:

π?(a|s) =
d?(s, a)∑
a′ d

?(s, a′)
,

is an optimal policy. An alternative optimal policy is argmaxa d
?(s, a) (and these policies are identical if the optimal

policy is unique).
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1.4 Sample Complexity and Sampling Models

Much of reinforcement learning is concerned with finding a near optimal policy (or obtaining near optimal reward)
in settings where the MDPs is not known to the learner. We will study these questions in a few different models of
how the agent obtains information about the unknown underlying MDP. In each of these settings, we are interested
understanding the number of samples required to find a near optimal policy, i.e. the sample complexity. Ultimately, we
interested in obtaining results which are applicable to cases where number of states and actions is large (or, possibly,
countably or uncountably infinite). This is many ways analogous to the supervised learning question of generalization,
though, as we shall see, this question is fundamentally more challenging in the reinforcement learning setting.

The Episodic Setting. In the episodic setting, in every episode, the learner acts for some finite number of steps,
starting from a fixed starting state s0 ∼ µ, the learner observes the trajectory, and the state resets to s0 ∼ µ. This
episodic model of feedback is applicable to both the finte-horizon and infinite horizon settings.

• (Finite Horizon MDPs) Here, each episode lasts for H-steps, and then the state is reset to s0 ∼ µ.

• (Infinite Horizon MDPs) Even for infinite horizon MDPs it is natural to work in an episodic model for learning,
where each episode terminates after a finite number of steps. Here, it is often natural to assume either the agent
can terminate the episode at will or that the episode will terminate at each step with probability 1 − γ. After
termination, we again assume that the state is reset to s0 ∼ µ. Note that, if each step in an episode is terminated
with probability 1 − γ, then the observed cumulative reward in an episode of a policy provides an unbiased
estimate of the infinite-horizon, discounted value of that policy.

In this setting, we are often interested in either the number of episodes it takes to find a near optimal policy, which is
a PAC (probably, approximately correct) guarantee, or we are interested in a regret guarantee (which we will study in
Chapter 7). Both of these questions are with regards to statistical complexity (i.e. the sample complexity) of learning.

The episodic setting is challenging in that the agent has to engage in some exploration in order to gain information at
the relevant state. As we shall see in Chapter 7, this exploration must be strategic, in the sense that simply behaving
randomly will not lead to information being gathered quickly enough. It is often helpful to study the statistical com-
plexity of learning in a more abstract sampling model, a generative model, which allows to avoid having to directly
address this exploration issue. Furthermore, this sampling model is natural in its own right.

The generative model setting. A generative model takes as input a state action pair (s, a) and returns a sample
s′ ∼ P (·|s, a) and the reward r(s, a) (or a sample of the reward if the rewards are stochastic).

The offline RL setting. The offline RL setting is where the agent has access to an offline dataset, say generated
under some policy (or a collection of policies). In the simplest of these settings, we may assume our dataset is of the
form {(s, a, s′, r)} where r is the reward (corresponding to r(s, a) if the reward is deterministic) and s′ ∼ P (·|s, a).
Furthermore, for simplicity, it can be helpful to assume that the s, a pairs in this dataset were sampled i.i.d. from some
fixed distribution ν over S ×A.

1.5 Bonus: Advantages and The Performance Difference Lemma

Throughout, we will overload notation where, for a distribution µ over S, we write:

V π(µ) = Es∼µ [V π(s)] .

18



The advantage Aπ(s, a) of a policy π is defined as

Aπ(s, a) := Qπ(s, a)− V π(s) .

Note that:
A∗(s, a) := Aπ

∗
(s, a) ≤ 0

for all state-action pairs.

Analogous to the state-action visitation distribution (see Equation 0.8), we can define a visitation measure over just
the states. When clear from context, we will overload notation and also denote this distribution by dπs0 , where:

dπs0(s) = (1− γ)

∞∑
t=0

γtPrπ(st = s|s0). (0.9)

Here, Prπ(st = s|s0) is the state visitation probability, under π starting at state s0. Again, we write:

dπµ(s) = Es0∼µ
[
dπs0(s)

]
.

for a distribution µ over S.

The following lemma is helpful in the analysis of RL algorithms.

Lemma 1.16. (The performance difference lemma) For all policies π, π′ and distributions µ over S,

V π(µ)− V π′(µ) =
1

1− γEs′∼dπµEa′∼π(·|s′)

[
Aπ
′
(s′, a′)

]
.

Proof: Let Prπ(τ |s0 = s) denote the probability of observing a trajectory τ when starting in state s and following the
policy π. By definition of dπθs0 , observe that for any function f : S ×A → R,

Eτ∼Prπ

[ ∞∑
t=0

γtf(st, at)

]
=

1

1− γEs∼d
πθ
s0
Ea∼πθ(·|s)

[
f(s, a)

]
. (0.10)

Using a telescoping argument, we have:

V π(s)− V π′(s) = Eτ∼Prπ(τ |s0=s)

[ ∞∑
t=0

γtr(st, at)

]
− V π′(s)

= Eτ∼Prπ(τ |s0=s)

[ ∞∑
t=0

γt
(
r(st, at) + V π

′
(st)− V π

′
(st)

)]
− V π′(s)

(a)
= Eτ∼Prπ(τ |s0=s)

[ ∞∑
t=0

γt
(
r(st, at) + γV π

′
(st+1)− V π′(st)

)]
(b)
= Eτ∼Prπ(τ |s0=s)

[ ∞∑
t=0

γt
(
r(st, at) + γE[V π

′
(st+1)|st, at]− V π

′
(st)

)]
(c)
= Eτ∼Prπ(τ |s0=s)

[ ∞∑
t=0

γt
(
Qπ
′
(st, at)− V π

′
(st)

)]

= Eτ∼Prπ(τ |s0=s)

[ ∞∑
t=0

γtAπ
′
(st, at)

]

=
1

1− γEs′∼dπs Ea∼π(·|s)A
π′(s′, a),

where step (a) rearranges terms in the summation via telescoping; step (b) uses the law of iterated expectations; step
(c) follows by definition; and the final equality follows from Equation 0.10.
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1.6 Bibliographic Remarks and Further Reading

We refer the reader to [Puterman, 1994] for a more detailed treatment of dynamic programming and MDPs. [Puterman,
1994] also contains a thorough treatment of the dual LP, along with a proof of Lemma 1.15

With regards to the computational complexity of policy iteration, [Ye, 2011] showed that policy iteration is a strongly
polynomial time algorithm for a fixed discount rate 1. Also, see [Ye, 2011] for a good summary of the computa-
tional complexities of various approaches. [Mansour and Singh, 1999] showed that the number of iterations of policy
iteration can be bounded by |A|

|S|

|S| .

With regards to a strongly polynomial algorithm, the CIPA algorithm [Ye, 2005] is an interior point algorithm with the
claimed runtime in Table 0.1.

Lemma 1.11 is due to Singh and Yee [1994].

The performance difference lemma is due to [Kakade and Langford, 2002, Kakade, 2003], though the lemma was
implicit in the analysis of a number of prior works.

1The stated strongly polynomial runtime in Table 0.1 for policy iteration differs from that in [Ye, 2011] due to we assume that the runtime per
iteration of policy iteration is |S|3 + |S|2|A|.
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Chapter 2

Sample Complexity with a Generative
Model

This chapter begins our study of the sample complexity, where we focus on the (minmax) number of transitions we
need to observe in order to accurately estimate Q? or in order to find a near optimal policy. We assume that we have
access to a generative model (as defined in Section 1.4) and that the reward function is deterministic (the latter is often
a mild assumption, due to that much of the difficulty in RL is due to the uncertainty in the transition model P ).

This chapter follows the results due to [Azar et al., 2013], along with some improved rates due to [Agarwal et al.,
2020c]. One of the key observations in this chapter is that we can find a near optimal policy using a number of observed
transitions that is sublinear in the model size, i.e. use a number of samples that is smaller than O(|S|2|A|). In other
words, we do not need to learn an accurate model of the world in order to learn to act near optimally.

Notation. We define M̂ to be the empirical MDP that is identical to the original M , except that it uses P̂ instead
of P for the transition model. When clear from context, we drop the subscript on M on the values, action values
(and one-step variances and variances which we define later). We let V̂ π , Q̂π , Q̂?, and π̂? denote the value function,
state-action value function, optimal state-action value, and optimal policy in M̂ , respectively.

2.1 Warmup: a naive model-based approach

A central question in this chapter is: Do we require an accurate model of the world in order to find a near optimal
policy? Recall that a generative model takes as input a state action pair (s, a) and returns a sample s′ ∼ P (·|s, a) and
the reward r(s, a) (or a sample of the reward if the rewards are stochastic). Let us consider the most naive approach
to learning (when we have access to a generative model): suppose we call our simulator N times at each state action
pair. Let P̂ be our empirical model, defined as follows:

P̂ (s′|s, a) =
count(s′, s, a)

N

where count(s′, s, a) is the number of times the state-action pair (s, a) transitions to state s′. As the N is the number
of calls for each state action pair, the total number of calls to our generative model is |S||A|N . As before, we can view
P̂ as a matrix of size |S||A| × |S|.
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Note that since P has a |S|2|A| parameters, we would expect that observing O(|S|2|A|) transitions is sufficient to
provide us with an accurate model. The following proposition shows that this is the case.

Proposition 2.1. There exists an absolute constant c such that the following holds. Suppose ε ∈
(
0, 1

1−γ
)

and that we
obtain

# samples from generative model = |S||A|N ≥ γ

(1− γ)4

|S|2|A| log(c|S||A|/δ)
ε2

where we uniformly sample every state action pair. Then, with probability greater than 1− δ, we have:

• (Model accuracy) The transition model has error bounded as:

max
s,a
‖P (·|s, a)− P̂ (·|s, a)‖1 ≤ (1− γ)2ε .

• (Uniform value accuracy) For all policies π,

‖Qπ − Q̂π‖∞ ≤ ε

• (Near optimal planning) Suppose that π̂ is the optimal policy in M̂ . We have that:

‖Q̂? −Q?‖∞ ≤ ε, and ‖Qπ̂ −Q?‖∞ ≤ 2ε.

Before we provide the proof, the following lemmas will be helpful throughout:

Lemma 2.2. (Simulation Lemma) For all π we have that:

Qπ − Q̂π = γ(I − γP̂π)−1(P − P̂ )V π

Proof: Using our matrix equality for Qπ (see Equation 0.2), we have:

Qπ − Q̂π = (I − γPπ)−1r − (I − γP̂π)−1r

= (I − γP̂π)−1((I − γP̂π)− (I − γPπ))Qπ

= γ(I − γP̂π)−1(Pπ − P̂π)Qπ

= γ(I − γP̂π)−1(P − P̂ )V π

which proves the claim.

Lemma 2.3. For any policy π, MDP M and vector v ∈ R|S|×|A|, we have
∥∥(I − γPπ)−1v

∥∥
∞ ≤ ‖v‖∞ /(1− γ).

Proof: Note that v = (I − γPπ)(I − γPπ)−1v = (I − γPπ)w, where w = (I − γPπ)−1v. By triangle inequality,
we have

‖v‖∞ = ‖(I − γPπ)w‖∞ ≥ ‖w‖∞ − γ ‖Pπw‖∞ ≥ ‖w‖∞ − γ ‖w‖∞ ,

where the final inequality follows since Pπw is an average of the elements of w by the definition of Pπ so that
‖Pπw‖∞ ≤ ‖w‖∞. Rearranging terms completes the proof.

Now we are ready to complete the proof of our proposition.

Proof: Using the concentration of a distribution in the `1 norm (Lemma A.8), we have that for a fixed s, a that, with
probability greater than 1− δ, we have:

‖P (·|s, a)− P̂ (·|s, a)‖1 ≤ c
√
|S| log(1/δ)

m
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where m is the number of samples used to estimate P̂ (·|s, a). The first claim now follows by the union bound (and
redefining δ and c appropriately).

For the second claim, we have that:

‖Qπ − Q̂π‖∞ = ‖γ(I − γP̂π)−1(P − P̂ )V π‖∞ ≤
γ

1− γ ‖(P − P̂ )V π‖∞

≤ γ

1− γ

(
max
s,a
‖P (·|s, a)− P̂ (·|s, a)‖1

)
‖V π‖∞ ≤

γ

(1− γ)2
max
s,a
‖P (·|s, a)− P̂ (·|s, a)‖1

where the penultimate step uses Holder’s inequality. The second claim now follows.

For the final claim, first observe that | supx f(x) − supx g(x)| ≤ supx |f(x) − g(x)|, where f and g are real valued
functions. This implies:

|Q̂?(s, a)−Q?(s, a)| = | sup
π
Q̂π(s, a)− sup

π
Qπ(s, a)| ≤ sup

π
|Q̂π(s, a)−Qπ(s, a)| ≤ ε

which proves the first inequality. The second inequality is left as an exercise to the reader.

2.2 Sublinear Sample Complexity

In the previous approach, we are able to accurately estimate the value of every policy in the unknown MDP M . How-
ever, with regards to planning, we only need an accurate estimate Q̂? of Q?, which we may hope would require less
samples. Let us now see that the model based approach can be refined to obtain minmax optimal sample complexity,
which we will see is sublinear in the model size.

We will state our results in terms of N , and recall that N is the # of calls to the generative models per state-action pair,
so that:

# samples from generative model = |S||A|N.

Let us start with a crude bound on the optimal action-values, which provides a sublinear rate. In the next section, we
will improve upon this to obtain the minmax optimal rate.

Proposition 2.4. (Crude Value Bounds) Let δ ≥ 0. With probability greater than 1− δ,

‖Q? − Q̂?‖∞ ≤ ∆δ,N

‖Q? − Q̂π?‖∞ ≤ ∆δ,N ,

where:

∆δ,N :=
γ

(1− γ)2

√
2 log(2|S||A|/δ)

N

Note that the first inequality above shows a sublinear rate on estimating the value function. Ultimately, we are in-
terested in the value V π̂

?

when we execute π̂?, not just an estimate Q̂? of Q?. Here, by Lemma 1.11, we lose an
additional horizon factor and have:

‖Q? − Q̂π̂?‖∞ ≤
1

1− γ∆δ,N .

As we see in Theorem 2.6, this is improvable.

Before we provide the proof, the following lemma will be helpful throughout.
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Lemma 2.5. (Component-wise Bounds) We have that:

Q? − Q̂? ≤ γ(I − γP̂π?)−1(P − P̂ )V ?

Q? − Q̂? ≥ γ(I − γP̂ π̂?)−1(P − P̂ )V ?

Proof: For the first claim, the optimality of π? in M implies:

Q? − Q̂? = Qπ
? − Q̂π̂? ≤ Qπ? − Q̂π? = γ(I − γP̂π?)−1(P − P̂ )V ?,

where we have used Lemma 2.2 in the final step. This proves the first claim.

For the second claim,

Q? − Q̂? = Qπ
? − Q̂π̂?

= (1− γ)
(

(I − γPπ?)−1r − (I − γP̂ π̂?)−1r
)

= (I − γP̂π?)−1((I − γP̂ π̂?)− (I − γPπ?))Q?

= γ(I − γP̂π?)−1(Pπ
? − P̂ π̂?)Q?

≥ γ(I − γP̂π?)−1(Pπ
? − P̂π?)Q?

= γ(I − γP̂π?)−1(P − P̂ )V ? ,

where the inequality follows from P̂ π̂
?

Q? ≤ P̂π?Q?, due to the optimality of π?. This proves the second claim.

Proof: Following from the simulation lemma (Lemma 2.2) and Lemma 2.3, we have:

‖Q? − Q̂π?‖∞ ≤
γ

1− γ ‖(P − P̂ )V ?‖∞.

Also, the previous lemma, implies that:

‖Q? − Q̂?‖∞ ≤
γ

1− γ ‖(P − P̂ )V ?‖∞

By applying Hoeffding’s inequality and the union bound,

‖(P − P̂ )V ?‖∞ = max
s,a
|Es′∼P (·|s,a)[V

?(s′)]− Es′∼P̂ (·|s,a)[V
?(s′)]| ≤ 1

1− γ

√
2 log(2|S||A|/δ)

N

which holds with probability greater than 1− δ. This completes the proof.

2.3 Minmax Optimal Sample Complexity (and the Model Based Approach)

We now see that the model based approach is minmax optimal, for both the discounted case and the finite horizon
setting.

2.3.1 The Discounted Case

Upper bounds. The following theorem refines our crude bound on Q̂?.

Theorem 2.6. For δ ≥ 0 and for an appropriately chosen absolute constant c, we have that:
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• (Value estimation) With probability greater than 1− δ,

‖Q? − Q̂?‖∞ ≤ γ
√

c

(1− γ)3

log(c|S||A|/δ)
N

+
cγ

(1− γ)3

log(c|S||A|/δ)
N

.

• (Sub-optimality) If N ≥ 1
(1−γ)2 , then with probability greater than 1− δ,

‖Q? −Qπ̂?‖∞ ≤ γ
√

c

(1− γ)3

log(c|S||A|/δ)
N

.

This immediately provides the following corollary.

Corollary 2.7. Provided that ε ≤ 1 and that

# samples from generative model = |S||A|N ≥ c|S||A|
(1− γ)3

log(c|S||A|/δ)
ε2

,

then with probability greater than 1− δ,
‖Q? − Q̂?‖∞ ≤ ε.

Furthermore, provided that ε ≤
√

1
1−γ and that

# samples from generative model = |S||A|N ≥ c|S||A|
(1− γ)3

log(c|S||A|/δ)
ε2

,

then with probability greater than 1− δ,
‖Q? −Qπ̂?‖∞ ≤ ε.

We only prove the first claim in Theorem 2.6 on the estimation accuracy. With regards to the sub-optimality, note
that Theorem 1.11 already implies a sub-optimality gap, though with an amplification of the estimation error by
2/(1 − γ). The argument for the improvement provided in the second claim is more involved (See Section 2.6 for
further discussion).

Lower Bounds. Let us say that an estimation algorithm A, which is a map from samples to an estimate Q̂?, is
(ε, δ)-good on MDP M if ‖Q? − Q̂?‖∞ ≤ ε holds with probability greater than 1− δ.

Theorem 2.8. There exists ε0, δ0, c and a set of MDPsM such that for ε ∈ (0, ε0) and δ ∈ (0, δ0) if algorithm A is
(ε, δ)-good on all M ∈M, then A must use a number of samples that is lower bounded as follows

# samples from generative model ≥ c

(1− γ)3

|S||A| log(c|S||A|/δ)
ε2

.

In other words, this theorem shows that the model based approach minmax optimal.

2.3.2 Finite Horizon Setting

Recall the setting of finite horizon MDPs defined in Section 1.2. Again, we can consider the most naive approach to
learning (when we have access to a generative model): suppose we call our simulator N times for every (s, a, h) ∈
S ×A× [H], i.e. we obtain N i.i.d. samples where s′ ∼ Ph(·|s, a), for every (s, a, h) ∈ S ×A× [H]. Note that the
total number of observed transitions is H|S||A|N .
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Upper bounds. The following theorem provides an upper bound on the model based approach.

Theorem 2.9. For δ ≥ 0 and with probability greater than 1− δ, we have that:

• (Value estimation)

‖Q?0 − Q̂?0‖∞ ≤ cH
√

log(c|S||A|/δ)
N

+ cH
log(c|S||A|/δ)

N
,

• (Sub-optimality)

‖Q?0 −Qπ̂
?

0 ‖∞ ≤ cH
√

log(c|S||A|/δ)
N

+ cH
log(c|S||A|/δ)

N
,

where c is an absolute constant.

Note that the above bound requires N to be O(H2) in order to achieve an ε-optimal policy, while in the discounted
case, we require N to be O(1/(1 − γ)3) for the same guarantee. While this may seem like an improvement by a
horizon factor, recall that for the finite horizon case, N corresponds to observing O(H) more transitions than in the
discounted case.

Lower Bounds. In the minmax sense of Theorem 2.8, the previous upper bound provided by the model based
approach for the finite horizon setting achieves the minmax optimal sample complexity.

2.4 Analysis

We now prove (the first claim in) Theorem 2.6.

2.4.1 Variance Lemmas

The key to the sharper analysis is to more sharply characterize the variance in our estimates.

Denote the variance of any real valued f under a distribution D as:

VarD(f) := Ex∼D[f(x)2]− (Ex∼D[f(x)])2

Slightly abusing the notation, for V ∈ R|S|, we define the vector VarP (V ) ∈ R|S||A| as:

VarP (V )(s, a) := VarP (·|s,a)(V )

Equivalently,
VarP (V ) = P (V )2 − (PV )2 .

Now we characterize a relevant deviation in terms of the its variance.

Lemma 2.10. Let δ > 0. With probability greater than 1− δ,

|(P − P̂ )V ?| ≤
√

2 log(2|S||A|/δ)
N

√
VarP (V ?) +

1

1− γ
2 log(2|S||A|/δ)

3N
1 .
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Proof: The claims follows from Bernstein’s inequality along with a union bound over all state-action pairs.

The key ideas in the proof are in how we bound ‖(I−γP̂π?)−1
√

VarP (V ?)‖∞ and ‖(I−γP̂ π̂?)−1
√

VarP (V ?)‖∞.

It is helpful to define ΣπM as the variance of the discounted reward, i.e.

ΣπM (s, a) := E

( ∞∑
t=0

γtr(st, at)−QπM (s, a)

)2
∣∣∣∣∣∣s0 = s, a0 = a


where the expectation is induced under the trajectories induced by π in M . It is straightforward to verify that
‖ΣπM‖∞ ≤ γ2/(1− γ)2.

The following lemma shows that ΣπM satisfies a Bellman consistency condition.

Lemma 2.11. (Bellman consistency of Σ) For any MDP M ,

ΣπM = γ2VarP (V πM ) + γ2PπΣπM (0.1)

where P is the transition model in MDP M .

The proof is left as an exercise to the reader.

Lemma 2.12. (Weighted Sum of Deviations) For any policy π and MDP M ,∥∥∥(I − γPπ)−1
√

VarP (V πM )
∥∥∥
∞
≤
√

2

(1− γ)3
,

where P is the transition model of M .

Proof:Note that (1− γ)(I − γPπ)−1 is matrix whose rows are a probability distribution. For a positive vector v and
a distribution ν (where ν is vector of the same dimension of v), Jensen’s inequality implies that ν · √v ≤ √ν · v. This
implies:

‖(I − γPπ)−1
√
v‖∞ =

1

1− γ ‖(1− γ)(I − γPπ)−1
√
v‖∞

≤
√∥∥∥ 1

1− γ (I − γPπ)−1v
∥∥∥
∞

≤
√∥∥∥ 2

1− γ (I − γ2Pπ)−1v
∥∥∥
∞
.

where we have used that ‖(I − γPπ)−1v‖∞ ≤ 2‖(I − γ2Pπ)−1v‖∞ (which we will prove shortly). The proof is
completed as follows: by Equation 0.1, ΣπM = γ2(I − γ2Pπ)−1VarP (V πM ), so taking v = VarP (V πM ) and using that
‖ΣπM‖∞ ≤ γ2/(1− γ)2 completes the proof.

Finally, to see that ‖(I − γPπ)−1v‖∞ ≤ 2‖(I − γ2Pπ)−1v‖∞, observe:

‖(I − γPπ)−1v‖∞ = ‖(I − γPπ)−1(I − γ2Pπ)(I − γ2Pπ)−1v‖∞
= ‖(I − γPπ)−1

(
(1− γ)I + γ(I − γPπ)

)
(I − γ2Pπ)−1v‖∞

= ‖
(

(1− γ)(I − γPπ)−1 + γI
)

(I − γ2Pπ)−1v‖∞
≤ (1− γ)‖(I − γPπ)−1(I − γ2Pπ)−1v‖∞ + γ‖(I − γ2Pπ)−1v‖∞
≤ 1− γ

1− γ ‖(I − γ
2Pπ)−1v‖∞ + γ‖(I − γ2Pπ)−1v‖∞

≤ 2‖(I − γ2Pπ)−1v‖∞
which proves the claim.
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2.4.2 Completing the proof

Lemma 2.13. Let δ ≥ 0. With probability greater than 1− δ, we have:

VarP (V ?) ≤ 2VarP̂ (V̂ π
?

) + ∆′δ,N1

VarP (V ?) ≤ 2VarP̂ (V̂ ?) + ∆′δ,N1

where

∆′δ,N :=
1

(1− γ)2

√
18 log(6|S||A|/δ)

N
+

1

(1− γ)4

4 log(6|S||A|/δ)
N

.

Proof: By definition,

VarP (V ?) = VarP (V ?)− VarP̂ (V ?) + VarP̂ (V ?)

= P (V ?)2 − (PV ?)2 − P̂ (V ?)2 + (P̂ V ?)2 + VarP̂ (V ?)

= (P − P̂ )(V ?)2 −
(

(PV ?)2 − (P̂ V ?)2
)

+ VarP̂ (V ?)

Now we bound each of these terms with Hoeffding’s inequality and the union bound. For the first term, with probability
greater than 1− δ,

‖(P − P̂ )(V ?)2‖∞ ≤
1

(1− γ)2

√
2 log(2|S||A|/δ)

N
.

For the second term, again with probability greater than 1− δ,

‖(PV ?)2 − (P̂ V ?)2‖∞ ≤ ‖PV ? + P̂ V ?‖∞‖PV ? − P̂ V ?‖∞

≤ 2

1− γ ‖(P − P̂ )V ?‖∞ ≤
2

(1− γ)2

√
2 log(2|S||A|/δ)

N
.

where we have used that (·)2 is a component-wise operation in the second step. For the last term:

VarP̂ (V ?) = VarP̂ (V ? − V̂ π? + V̂ π
?

)

≤ 2VarP̂ (V ? − V̂ π?) + 2VarP̂ (V̂ π
?

)

≤ 2‖V ? − V̂ π?‖2∞ + 2VarP̂ (V̂ π
?

)

= 2∆2
δ,N + 2VarP̂ (V̂ π

?

) .

where ∆δ,N is defined in Proposition 2.4. To obtain a cumulative probability of error less than δ, we replace δ in the
above claims with δ/3. Combining these bounds completes the proof of the first claim. The argument in the above
display also implies that VarP̂ (V ?) ≤ 2∆2

δ,N + 2VarP̂ (V̂ ?) which proves the second claim.

Using Lemma 2.10 and 2.13, we have the following corollary.

Corollary 2.14. Let δ ≥ 0. With probability greater than 1− δ, we have:

|(P − P̂ )V ?| ≤ c

√
VarP̂ (V̂ π?) log(c|S||A|/δ)

N
+ ∆′′δ,N1

|(P − P̂ )V ?| ≤ c

√
VarP̂ (V̂ ?) log(c|S||A|/δ)

N
+ ∆′′δ,N1 ,

where

∆′′δ,N := c
1

1− γ

(
log(c|S||A|/δ)

N

)3/4

+
c

(1− γ)2

log(c|S||A|/δ)
N

,

and where c is an absolute constant.
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Proof:(of Theorem 2.6) The proof consists of bounding the terms in Lemma 2.5. We have:

Q? − Q̂? ≤ γ‖(I − γP̂π?)−1(P − P̂ )V ?‖∞

≤ cγ

√
log(c|S||A|/δ)

N
‖(I − γP̂π?)−1

√
VarP̂ (V̂ π?)‖∞ +

cγ

(1− γ)2

(
log(c|S||A|/δ)

N

)3/4

+
cγ

(1− γ)3

log(c|S||A|/δ)
N

≤ γ

√
2

(1− γ)3

√
log(c|S||A|/δ)

N
+

cγ

(1− γ)2

(
log(c|S||A|/δ)

N

)3/4

+
cγ

(1− γ)3

log(c|S||A|/δ)
N

≤ 3γ

√
1

(1− γ)3
c

√
log(c|S||A|/δ)

N
+ 2

cγ

(1− γ)3

log(c|S||A|/δ)
N

,

where the first step uses Corollary 2.14; the second uses Lemma 2.12; and the last step uses that 2ab ≤ a2 + b2

(and choosing a, b appropriately). The proof of the lower bound is analogous. Taking a different absolute constant
completes the proof.

2.5 Scalings and Effective Horizon Dependencies

It will be helpful to more intuitively understand why 1/(1 − γ)3 is the effective horizon dependency one might hope
to expect, from a dimensional analysis viewpoint. Due to that Q? is a quantity that is as large as 1/(1− γ), to account
for this scaling, it is natural to look at obtaining relative accuracy.

In particular, if

N ≥ c

1− γ
|S||A| log(c|S||A|/δ)

ε2
,

then with probability greater than 1− δ, then

‖Q? −Qπ̂?‖∞ ≤
ε

1− γ , and ‖Q? − Q̂?‖∞ ≤
ε

1− γ .

(provided that ε ≤ √1− γ using Theorem 2.6). In other words, if we had normalized the value functions 1, then for
additive accuracy (on our normalized value functions) our sample size would scale linearly with the effective horizon.

2.6 Bibliographic Remarks and Further Readings

The notion of a generative model was first introduced in [Kearns and Singh, 1999], which made the argument that,
up to horizon factors and logarithmic factors, both model based methods and model free methods are comparable.
[Kakade, 2003] gave an improved version of this rate (analogous to the crude bounds seen here).

The first claim in Theorem 2.6 is due to [Azar et al., 2013], and the proof in this section largely follows this work.
Improvements are possible with regards to bounding the quality of π̂?; here, Theorem 2.6 shows that the model based
approach is near optimal even for policy itself; showing that the quality of π̂? does suffer any amplification factor of
1/(1−γ). [Sidford et al., 2018] provides the first proof of this improvement using a variance reduction algorithm with
value iteration. The second claim in Theorem 2.6 is due to [Agarwal et al., 2020c], which shows that the naive model
based approach is sufficient. The lower bound in Theorem 2.8 is due to [Azar et al., 2013].

1Rescaling the value functions by multiplying by (1−γ), i.e. Qπ ← (1−γ)Qπ , would keep the values bounded between 0 and 1. Throughout,
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We also remark that we may hope for the sub-optimality bounds (on the value of the argmax policy) to hold up to for
“large” ε, i.e. up to ε ≤ 1/(1 − γ) (see the second claim in Theorem 2.6). Here, the work in [Li et al., 2020] shows
this limit is achievable, albeit with a slightly different algorithm where they introduce perturbations. It is currently an
open question if the naive model based approach also achieves the non-asymptotic statistical limit.

This chapter also provided results, without proof, on the optimal sample complexity in the finite horizon setting (see
Section 2.3.2). The proof of this claim would also follow from the line of reasoning in [Azar et al., 2013], with
the added simplification that the sub-optimality analysis is simpler in the finite-horizon setting with time-dependent
transition matrices (e.g. see [Yin et al., 2021]).

this book it is helpful to understand sample size with regards to normalized quantities.
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Chapter 3

Linear Bellman Completeness

Up to now we have focussed on “tabular” MDPs, where the sample complexity (and the computational complexity)
scaled polynomially in the size of the state and action spaces. Ultimately, we seek to obtain methods which are
applicable to cases where number of states and actions is large (or, possibly, countably or uncountably infinite).

In this chapter, we will consider one of the simplest conditions, where such a result is possible. In particular, we will
consider a setting where we have a set of features which satisfy the linear Bellman completion condition, and we show
that, with access to a generative model, there is a simple algorithm that learns a near optimal policy with polynomial
sample complexity in the dimension of these features.

The linear Bellman completeness concept and first analysis was due to [Munos, 2005]. This chapter studies this
concept in the setting of finite horizon MDPs, where we have access to a generative model.

3.1 The Linear Bellman Completeness Condition

We will work with given a feature mapping φ : S × A 7→ Rd, where we assume the following property is true: given
any linear function f(s, a) := θ>φ(s, a), we have that the Bellman operator applied to f(s, a) also returns a linear
function with respect to φ. Precisely, we have:

Definition 3.1 (Linear Bellman Completeness). We say the features φ satisfy the linear Bellman completeness property
if for all θ ∈ Rd and (s, a, h) ∈ S ×A× [H], there exists w ∈ Rd such that:

w>φ(s, a) = r(s, a) + Es′∼Ph(s,a) max
a′

θ>φ(s′, a′).

As w depends on θ, we use the notation Th : Rd 7→ Rd to represent such a w, i.e., w := Th(θ) in the above equation.

Note that the above implies that r(s, a) is in the span of φ (to see this, take θ = 0). Furthermore, it also implies that
Q?h(s, a) is linear in φ, i.e., there exists θ?h such that Q?h(s, a) = (θ?h)>φ(s, a). We can easily see that tabular MDP
is captured by the linear Bellman completeness with φ(s, a) ∈ R|S||A| being a one-hot encoding vector with zeros
everywhere except one at the entry corresponding to state-action (s, a). In Chapters 8 and 9, we will provide precise
examples of models which satisfy the linear Bellman completeness condition.

We focus on the generative model setting, i.e., where we can input any (s, a) pair to obtain a next state sample
s′ ∼ P (s, a) and reward r(s, a). Our goal here is to design an algorithm that finds a policy π̂ such that V π̂ ≥ V ? − ε,
with number of samples scaling polynomially with respect to all relevant parameters d,H, 1/ε.
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Algorithm 1 Least Squares Value Iteration
1: Input: D0, . . . ,DH−1

2: Set VH(s) = 0 for all s ∈ S
3: for h = H − 1→ 0 do
4: Solve least squares

θh = arg min
θ

∑
s,a,r,s′∈Dh

(
θ>φ(s, a)− r − Vh+1(s′)

)2
(0.1)

5: Set Vh(s) = maxa∈A θ
>
h φ(s, a),∀s

6: end for
7: Return: {π̂h(s)}H−1

h=0 where π̂h(s) := arg maxa θ
>
h φ(s, a),∀s, h.

3.2 The LSVI Algorithm

We first present the least square value iteration (LSVI) algorithm (Alg. 1) here. The algorithm takes H many datasets
D0, . . . ,DH−1 as inputs, where each Dh = {s, a, r, s′}.
For each time step, LSVI estimate Q?h(s, a) via θ>h φ(s, a) with θh computed from a least square problem.

To make sure the algorithm succeeds in terms of finding a near optimal policy, we need to design the datasets
D0, . . . ,DH−1. Intuitively, we may want to make sure that in each Dh, we have

∑
s,a∈Dh φ(s, a)φ(s, a)> being

full rank, so that least square has closed-form solution, and θh has a good generalization bound. In the next section,
we will leverage the generative model setting and the D-optimal design to construct such datasets.

3.3 LSVI with D-Optimal Design

In this section, we start by introducing the D-optimal design and its properties. We then use the D-optimal design to
construct a dataset and give a generalization bound for the solution to the least squares problem on the constructed
dataset. Finally, we present the sample complexity bound for LSVI and its analysis.

We will use the notation ‖x‖2M = x>Mx for a matrix M and vector x of appropriate dimensions.

3.3.1 D-Optimal Design

We now specify a sampling distribution which, roughly speaking, ensures good coverage (in a spectral sense) over our
feature set.

Theorem 3.2. Suppose X ⊂ Rd is a compact set (and full dimensional). There exists a distribution ρ on X such that:

• ρ is supported on at most d(d+ 1)/2 points (all of which are in X ).

• Define
Σ = Ex∼ρ[xx>.]

We have that for all x ∈ X ,
‖x‖2Σ−1 ≤ d.

The distribution ρ is referred to as the D-optimal design.
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With these two properties, one can show that for any x ∈ X , it can be written as a linear combination of the points on
the support of ρ, i.e., x =

∑
xi∈support(ρ) αiρ(xi)xi, where ‖α‖22 ≤ d.

The following specifies an explicit construction: ρ is the following maximizer:

ρ ∈ argmaxν∈∆(X ) ln det
(
Ex∼νxx>

)
. (0.2)

(and there exists an optimizer which is supported on at most d(d + 1)/2 points). The design ρ has a geometric
interpretation: the centered ellipsoid E = {v : ‖v‖2Σ−1 ≤ d} is the unique minimum volume centered ellipsoid
containing X We do not provide the proof here (See Section 3.6).

In our setting, we will utilize the D-optimal design on the set Φ := {φ(s, a) : s, a ∈ S ×A}.

Change of basis interpretation with D-optimal design. Consider the coordinate transformation:

x̃ := Σ−1/2x.

Here we have that:
Σ̃ := Ex∼ρ[x̃x̃>] = I.

Furthermore, we still have that ‖x̃‖2Σ̃−1 ≤ d. In this sense, we can interpret the D-optimal design as providing a
well-conditioned sampling distribution for the set X .

3.3.2 Performance Guarantees

Now we explain how we can construct a dataset Dh for h = 0, . . . ,H − 1 using the D-optimal design ρ and the
generative model:

• At h, for each s, a ∈ support(ρ), we sample ns,a := dρ(s, a)Nemany next states independently from Ph(·|s, a);
combine all (s, a, r(s, a), s′) and denote the whole dataset as Dh

• Repeat for all h ∈ [0, . . . ,H − 1] to construct D0, . . . ,DH−1.

The key property of the dataset Dh is that the empirical covariance matrix
∑
s,a∈Dh φ(s, a)φ(s, a)> is full rank.

Denote Λh =
∑
s,a∈Dh φ(s, a)φ(s, a)>, we can verify that

Λh =
∑
s,a∈D

φ(s, a)φ(s, a)> < NΣ (0.3)

where the inequality comes from the fact that in Dh, for each s, a ∈ support(ρ), we have dρ(s, a)Ne many copies of
it. The D-optimal design ensures that Λ covers all φ(s, a) in the sense that maxs,a φ(s, a)>Λ−1

h φ(s, a)> ≤ d due to
the property of the D-optimal design. This is the key property that ensures the solution of the least squares on Dh is
accurate globally.

Now we state the main sample complexity bound theorem for LSVI.

Theorem 3.3 (Sample Complexity of LSVI). Suppose our features satisfy the linear Bellman completion property.
Fix δ ∈ (0, 1) and ε ∈ (0, 1). Set parameter N :=

⌈
64H6d2ln(1/δ)

ε2

⌉
. With probability at least 1 − δ, Algorithm 1

outputs π̂ such that:

Es∼µV ?0 (s)− Es∼µV π̂0 (s) ≤ ε,

with total number of samples H
(
d2 + 64H6d2ln(1/δ)

ε2

)
.
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3.3.3 Analysis

To prove the theorem, we first show that if we had {Q̂h}h such that the Bellman residual ‖Q̂h − ThQ̂h+1‖∞ is small,
then the performance of the greedy policies with respect to Q̂h is already near optimal. Note that this result is general
and has nothing to do with the LSVI algorithm.

Lemma 3.4. Assume that for all h, we have
∥∥∥Q̂h − Th+1Q̂h+1

∥∥∥
∞
≤ ε. Then we have:

1. Accuracy of Q̂h: for all h:
∥∥∥Q̂h −Q?h∥∥∥∞ ≤ (H − h)ε,

2. Policy performance: for π̂h(s) := argmaxa Q̂h(s, a), we have
∣∣V π̂ − V ?∣∣ ≤ 2H2ε.

Proof: The proof of this lemma is elementary, which is analog to what we have proved in Value Iteration in the
discounted setting. For completeness, we provide a proof here.

Starting from QH(s, a) = 0,∀s, a, we have TH−1QH = r by definition. The condition implies that ‖Q̂H−1− r‖∞ ≤
ε, which means that ‖Q̂H−1 −Q?H−1‖∞ ≤ ε. This proves the base case.

Our inductive hypothesis is that ‖Q̂h+1 −Q?h+1‖∞ ≤ (H − h− 1)ε. Note that:

|Q̂h(s, a)−Q?h(s, a)| ≤ |Q̂h(s, a)− ThQ̂h+1(s, a)|+ |ThQ̂h+1(s, a)−Q?h(s, a)|
≤ ε+ |ThQ̂h+1(s, a)− ThQ?h+1(s, a)| ≤ ε+ (H − h− 1)ε = (H − h)ε,

which concludes the proof for the first claim.

For the second claim, Starting from time step H − 1, for any s, we have:

V π̂H−1(s)− V ?H−1(s) = Qπ̂H−1(s, π̂H−1(s))−Q?H−1(s, π?(s))

= Qπ̂H−1(s, π̂H−1(s))−Q?H−1(s, π̂H−1(s)) +Q?H−1(s, π̂H−1(s))−Q?H−1(s, π?(s))

= Q?H−1(s, π̂H−1(s))−Q?H−1(s, π?(s))

≥ Q?H−1(s, π̂H−1(s))− Q̂H−1(s, π̂H−1(s)) + Q̂H−1(s, π?(s))−Q?H−1(s, π?(s))

≥ 2ε,

where the third equality uses the fact that Qπ̂H−1(s, a) = Q?H−1(s, a) = r(s, a), the first inequality uses the definition
of π̂H−1 and Q̂H−1(s, π̂H−1(s)) ≥ Q̂H−1(s, a),∀a. This concludes the base case. For time step h+ 1, our inductive
hypothesis is defined as V π̂h+1(s)− V ?h+1(s) ≥ −2(H − h− 1)Hε. For time step h, we have:

V π̂h (s)− V ?h (s) = Qπ̂h(s, π̂h(s))−Q?h(s, π?(s))

= Qπ̂h(s, π̂h(s))−Q?h(s, π̂h(s)) +Q?h(s, π̂h(s))−Q?h(s, π?(s))

= Es′∼Ph(s,π̂h(s))

[
V π̂h+1(s′)− V ?h+1(s′)

]
+Q?h(s, π̂h(s))−Q?h(s, π?(s))

≥ −2(H − h− 1)ε+Q?h(s, π̂h(s))− Q̂h(s, π̂h(s)) + Q̂h(s, π?h(s))−Q?h(s, π?(s))

≥ −2(H − h− 1)Hε− 2(H − h)ε ≥ −2(H − h)Hε.

This concludes that for any s, at time step h = 0, we have V π̂0 (s)− V ?0 (s) ≥ −2H2ε.

To conclude the proof, what we left to show is that the Q̂h that is returned by LSVI satisfies the condition in the above
lemma. Note that Q̂h(s, a) = θ̂>h φ(s, a), and ThQ̂h+1 is indeed the Bayes optimal solution of the least squares in
Eq. 0.1, and via the Bellman completion assumption, we have ThQ̂h+1(s, a) = Th(θ̂h+1)>φ(s, a),∀s, a. With the
constructed Dh based on the D-optimal design, Linear regression immediately gives us a generalization bound on
‖Q̂h − ThQ̂h+1‖∞. The following theorem formalize the above statement.
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Lemma 3.5. Fix δ ∈ (0, 1) and ε ∈ (0, 1), set N =
⌈

16H2d2ln(H/δ)
ε2

⌉
. With probability at least 1 − δ, for all h, we

have:

∀h :
∥∥∥Q̂h − ThQ̂h+1

∥∥∥
∞
≤ ε.

Proof: The proof uses a standard result for ordinary least squares (see Theorem A.10 in the Appendix). Consider a
time step h. In time step h, we perform linear regression from φ(s, a) to r(s, a) + maxa′ θ̂

>
h+1φ(s′, a′). Note that the

Bayes optimal here is

Es′∼Ph(s,a)

[
r(s, a) + max

a′
θ̂>h+1φ(s′, a′)

]
= Th(θ̂h+1)>φ(s, a).

Also we can show that the noise εs,a :=
(
r(s, a) + maxa′ Q̂h+1(s′, a′)− ThQ̂h(s, a)

)
is bounded by 2H , and also

note that the noises are independent, and has mean zero: Es′∼Ph(s,a)

[
r(s, a) + maxa′ Q̂h+1(s′, a′)− ThQ̂h(s, a)

]
=

0. Using Theorem A.10, we have that with probability at least 1− δ,∥∥∥θ̂h − Th(θ̂h+1)
∥∥∥2

Λh
≤ 4H2

(
d+

√
d ln(1/δ) + 2 ln(1/δ)

)
.

Now for any s, a, we must have:∣∣∣(θ̂h − Th(θ̂h+1))>φ(s, a)
∣∣∣2 ≤ ∥∥∥θ̂h − Th(θ̂h+1)

∥∥∥2

Λh
‖φ(s, a)‖2

Λ−1
h

≤
∥∥∥θ̂h − Th(θ̂h+1)

∥∥∥2

Λh

d

N

≤ 4H2 d
2 + d1.5

√
ln(1/δ) + 2d ln(1/δ)

N
≤ 16H2d2 ln(1/δ)

N
,

which implies that: ∥∥∥Q̂h − ThQ̂h+1

∥∥∥
∞

= max
s,a

∣∣∣(θ̂h − Th(θ̂h+1))>φ(s, a)
∣∣∣ ≤ 4Hd

√
ln(1/δ)√
N

.

Set the right hand side to be ε, we have N = 16H2d2ln(1/δ)
ε2 .

Finally, apply union bound over all h = 0, . . . ,H − 1, we conclude the proof.

Now we are ready to conclude the proof for the main theorem.

Proof:[Proof of Theorem 3.3] Using Lemma 3.5, with N =
⌈

64H6d2 ln(H/δ)
ε2

⌉
, we have that ‖Q̂h − ThQ̂h+1‖∞ ≤

ε/(2H2) for all h, with probability at least 1− δ. Now apply Lemma 3.4, we immediately have that |V π̂ − V ?| ≤ ε.
Regarding sample complexity, we have:

H
∑
s,a

dρ(s, a)Ne ≤ H
∑

s,a∈support(ρ)

(1 + ρ(s, a)N) ≤ H
(
d2 +

64H6d2ln(H/δ)

ε2

)
,

where the second inequality use the support size upper bound of the D-optimal design ρ (see Lemma 3.2). This
completes the proof.

3.4 How Strong is Bellman Completion as a Modeling?

To be added.

35



3.5 Offline Reinforcement Learning

One notable observation about LSVI is that the algorithm is non-adaptive, in the sense that it works using a fixed set
of observed transitions and rewards. Hence, it is applicable to the offline setting discussed in Chapter 1.

We now discuss two offline objectives: that of learning a near optimal policy and that of policy evaluation (i.e. evalu-
ating the quality of a given policy).

We consider the setting where have a H datasets of the form Dh = {(si, ai, s′i, r(si, ai))}Ni=1, where we assume
for each i and h, that we have independent samples s′i ∼ Ph(·|si, ai). In other words, Dh is a dataset of observed
transitions corresponding to stage h, where each next state has been sampled independently. Note that here we have
not made explicit distributional assumption about how the (si, ai)’s have been generated. The results we present can
also be extended to where we have a fixed data generation distribution over these quadruples.

It is straight forward to extend the LSVI guarantees to these setting provided our dataset has coverage in the following
sense:

Assumption 3.6. (Coverage) Suppose that for each h ∈ [H], we have that:

1

N

∑
(si,ai)∈Dh

φ(si, ai)φ(si, ai)
> � 1

κ
Σ

where Σ is the D-optimal design covariance (see Equation 0.2).

3.5.1 Offline Learning

A minor modification of the proof in Theorem 3.3 leads to the following guarantee:

Theorem 3.7 (Sample Complexity of LSVI). Suppose that Assumption 3.6 holds and that our features satisfy the
linear Bellman completion property. Fix δ ∈ (0, 1) and ε ∈ (0, 1). Set parameter N :=

⌈
cκH6d2ln(1/δ)

ε2

⌉
, where c is

an appropriately chosen absolute constant. With probability at least 1− δ, Algorithm 1 outputs π̂ such that:

Es∼µ[V ?0 (s)]− Es∼µ[V π̂0 (s)] ≤ ε.

3.5.2 Offline Policy Evaluation

Here we are interested in question of evaluating some given policy π using the offline data. For this, we will make a
completeness assumption with respect to π as follows:

Definition 3.8 (Linear Completeness for π). We say the features φ satisfy the policy completeness property for π if
for all θ ∈ Rd and (s, a, h) ∈ S ×A× [H], there exists w ∈ Rd such that:

w>φ(s, a) = r(s, a) + Es′∼Ph(s,a)θ
>φ(s′, π(s′)).

For this case, Algorithm 2, Least Squares Policy Evaluation (LSPE), is a modified version of LSVI for the purposes of
estimation; note the algorithm no longer estimates Vh(s) using the greedy policy. Again, a nearly identical argument
to the proof in Theorem 3.3 leads to the following guarantee. Here, we set:

V̂ (µ) =
∑
si∈D0

θ0 · φ(si, π(si))

where θ0 is the parameter returned by LSVI.
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Algorithm 2 Least Squares Policy Evaluation
1: Input: π, D0, . . . ,DH−1

2: Set VH(s) = 0 for all s ∈ S
3: for h = H − 1→ 0 do
4: Solve least squares

θ̂h = arg min
θ

∑
s,a,r,s′∈Dh

(
θ>φ(s, a)− r − Vh+1(s′)

)2
(0.4)

5: Set Vh(s) = θ̂>h φ(s, π(s)),∀s
6: end for
7: Return: {θ̂h}H−1

h=0 .

Theorem 3.9 (Sample Complexity of LSPE). Suppose that Assumption 3.6 holds and that our features satisfy the lin-
ear policy completion property (with respect to π). Fix δ ∈ (0, 1) and ε ∈ (0, 1). Set parameterN :=

⌈
cκH4d2ln(1/δ)

ε2

⌉
,

where c is an appropriately chosen absolute constant. With probability at least 1− δ, Algorithm 2 outputs θ̂0 such that
for all s,

|V π0 (s)− θ̂>0 φ(s, π(s))| ≤ ε.

Note that the above theorem has a sample complexity improvement by a factor of H . This is due to that the analysis
is improvable, as we only care about value accuracy (the first claim in Lemma 3.4, rather than the second, is what is
relevant here). We should note that the sample size bounds presented in this chapter have not been optimized with
regards to their H dependencies.

3.6 Bibliographic Remarks and Further Readings

The idea of Bellman completion under general function class was introduced in [Munos, 2005] under the setting of
batch RL. For the episodic online learning setting, Zanette et al. [2020] provided a statistically efficient algorithm
under the linear Bellman completion condition, and [Jin et al., 2021] proposes a statistically efficient algorithms under
the Bellman completion condition with general function approximation.

We refer readers to to [Lattimore and Szepesvári, 2020] for a proof of the D-optimal design; the idea directly follows
from John’s theorem (e.g. see [Ball, 1997, Todd, 2016]).
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Chapter 4

Fitted Dynamic Programming Methods

Let us again consider the question of learning in large MDPs, when the underlying MDPs is unknown. In the previous
chapter, we relied on the linear Bellman completeness assumption to provide strong guarantees with only polynomial
dependence on the dimension of the feature space and the horizon H . This chapter considers the approach of using
function approximation methods with iterative dynamic programming approaches.

In particular, we now consider approaches which rely on (average-case) supervised learning methods (namely regres-
sion), where we use regression to approximate the target functions in both the value iteration and policy iteration
algorithms. We refer to these algorithms as fitted Q-iteration (FQI) and fitted policy iteration (FPI). The FQI algo-
rithm can be implemented in an offline RL sampling model while the FPI algorithm requires the sampling access to
an episodic model (see Chapter 1 for review of these sampling models).

This chapter focuses on obtaining of average case function approximation error bounds, provided we have a somewhat
stringent condition on how the underlying MDP behaves, quantified by the concentrability coefficient. This notion was
introduced in [Munos, 2003, 2005]. While the notion is somewhat stringent, we will see that it is not avoidable without
further assumptions. The next chapter more explicitly considers lower bounds, while Chapters 13 and 14 seek to relax
the concentrability notion.

4.1 Fitted Q-Iteration (FQI) and Offline RL

We consider infinite horizon discounted MDP M = {S,A, γ, P, r, µ} where µ is the initial state distribution. We
assume reward is bounded, i.e., sups,a r(s, a) ∈ [0, 1]. For notation simplicity, we denote Vmax := 1/(1− γ).

Given any f : S ×A 7→ R, we denote the Bellman operator T f : S ×A 7→ R as follows. For all s, a ∈ S ×A,

T f(s, a) := r(s, a) + γEs′∼P (·|s,a) max
a′∈A

f(s′, a′).

We assume that we have a distribution ν ∈ ∆(S × A). We collect a dataset D := {(si, ai, ri, s′i)}ni=1 where si, ai ∼
ν, ri = r(si, ai), s

′
i ∼ P (·|si, ai). Given D, our goal is to output a near optimal policy for the MDP, that is we

would like our algorithm to produce a policy π̂ such that, with probability at least 1 − δ, V (π̂) ≥ V ? − ε, for some
(ε, δ) pair. As usual, the number of samples n will depend on the accuracy parameters (ε, δ) and we would like n
to scale favorably with these. Given any distribution ν ∈ S × A, and any function f : S × A 7→ R, we write
‖f‖22,ν := Es,a∼νf2(s, a)

Denote a function class F = {f : S ×A 7→ [0, Vmax]}.

39



We require the data distribution ν is exploratory enough.

Assumption 4.1 (Concentrability). There exists a constant C such that for any policy π (including non-stationary
policies), we have:

∀π, s, a :
dπ(s, a)

ν(s, a)
≤ C.

Note that concentrability does not require that the state space is finite, but it does place some constraints on the system
dynamics. Note that the above assumption requires that ν to cover all possible policies’s state-action distribution, even
including non-stationary policies.

In additional to the above two assumptions, we need an assumption on the representational condition of class F .

Assumption 4.2 (Inherent Bellman Error). We assume the following error bound holds:

εapprox,ν := max
f∈F

min
f ′∈F

‖f ′ − T f‖22,ν .

We refer to εapprox,ν as the inherent Bellman error with respect to the distribution ν.

4.1.1 The FQI Algorithm

Fitted Q Iteration (FQI) simply performs the following iteration. Start with some f0 ∈ F , FQI iterates:

FQI: ft ∈ argminf∈F

n∑
i=1

(
f(s′i, ai)− ri − γ max

a′∈A
ft−1(si, ai)

)2

. (0.1)

After k many iterations, we output a policy πk(s) := argmaxa fk(s, a),∀s.
To get an intuition why this approach can work, let us assume the inherent Bellman error εapprox = 0 which is saying
that for any f ∈ F , we have T f ∈ F (i.e., Bellman completion). Note that the Bayes optimal solution is T ft−1.
Due to the Bellman completion assumption, the Bayes optimal solution T ft−1 ∈ F . Thus, we should expect that
ft is close to the Bayes optimal T ft−1 under the distribution ν, i.e., with a uniform convergence argument, for the
generalization bound, we should expect that:

Es,a∼ν (ft(s, a)− T ft−1(s, a))
2 ≈

√
1/n.

Thus in high level, ft ≈ T ft−1 as our data distribution ν is exploratory, and we know that based on value iteration,
T fk−1 is a better approximation of Q? than fk, i.e., ‖T ft−1 − Q?‖∞ ≤ γ‖ft−1 − Q?‖∞, we can expect FQI to
converge to the optimal solution when n→∞, t→∞. We formalize the above intuition below.

4.1.2 Performance Guarantees of FQI

We first state the performance guarantee of FQI.

Theorem 4.3 (FQI guarantee). Fix K ∈ N+. Fitted Q Iteration guarantees that with probability 1− δ,

V ? − V πK ≤ 1

(1− γ)2

(√
22CV 2

max ln(|F|2K/δ)
n

+
√

20Cεapprox,ν

)
+
γKVmax

(1− γ)
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We start from the following lemma which shows that if for all t, ‖ft+1 − T ft‖22,ν ≤ ε, then the greedy policy with
respect to ft is approaching to π?.

Lemma 4.4. Assume that for all t, we have ‖ft+1 − T ft‖2,ν ≤ ε, then for any k, we have:

V π
k − V ? ≤

√
Cε

(1− γ)2
+
γkVmax

1− γ .

Proof: We start from the Performance Difference Lemma:

(1− γ) (V ? − V πk) = Es∼dπk [−A?(s, πk(s))]

= Es∼dπk [Q?(s, π?(s))−Q?(s, πk(s))]

≤ Es∼dπk [Q?(s, π?(s))− fk(s, π?(s)) + fk(s, πk(s))−Q?(s, πk(s))]

≤ ‖Q? − fk‖1,dπk◦π? + ‖Q? − fk‖1,dπk◦πk
≤ ‖Q? − fk‖2,dπk◦π? + ‖Q? − fk‖2,dπk◦πk ,

where the first inequality comes from the fact that πk is a greedy policy of fk, i.e., fk(s, πk(s)) ≥ fk(s, a) for any
other a including π?(s). Now we bound each term on the RHS of the above inequality. We do this by consider a
state-action distribution β that is induced by some policy. We have:

‖Q? − fk‖2,β ≤ ‖Q? − T fk−1‖2,β + ‖fk − T fk−1‖2,β

≤ γ
√
Es,a∼β

[(
Es′∼P (·|s,a) max

a
Q?(s′, a)−max

a
fk−1(s′, a)

)2
]

+ ‖fk − T fk−1‖2,β

≤ γ
√
Es,a∼β,s′∼P (·|s,a) max

a
(Q?(s′, a)− fk−1(s′, a))

2
+
√
C‖fk − T fk−1‖2,ν ,

where in the last inequality, we use the fact that (E[x])2 ≤ E[x2], (maxx f(x)−maxx g(x))2 ≤ maxx(f(x)−g(x))2

for any two functions f and g, and assumption 4.1.

Denote β′(s′, a′) =
∑
s,a β(s, a)P (s′|s, a)1{a′ = argmaxa (Q?(s′, a)− fk−1(s′, a))

2}, the above inequality be-
comes:

‖Q? − fk‖2,β ≤ γ‖Q? − fk−1‖2,β′ +
√
C‖fk − T fk−1‖2,ν .

We can recursively repeat the same process for ‖Q? − fk−1‖2,ν′ till step k = 0:

‖Q? − fk‖2,β ≤
√
C
k−1∑
t=0

γt‖fk−t − T fk−t−1‖2,ν + γk‖Q? − f0‖2,ν̃ ,

where ν̃ is some valid state-action distribution.

Note that for the first term on the RHS of the above inequality, we can bound it as follow:

√
C

k−1∑
t=0

γt‖fk−t − T fk−t−1‖2,µ ≤
√
C

k−1∑
t=0

γkε ≤
√
Cε

1

1− γ .

For the second term, we have:

γ‖Q? − f0‖2,ν̃ ≤ γkVmax.

Thus, we have:

‖Q? − fk‖2,β =

√
Cε

1− γ + γkVmax,

41



for all β, including β = dπk ◦ π?, and β = dπk ◦ πk. This concludes the proof.

What left is to show that least squares control the error ε. We will use the generalization bound for least squares shown
in Lemma A.11.

Lemma 4.5 (Bellman error). With probability at least 1− δ, for all t = 0, . . . ,K, we have:

‖ft+1 − T ft‖22,ν ≤
22V 2

max ln(|F|2K/δ)
n

+ 20εapprox,ν .

Proof:

Let us fix a function g ∈ F , and consider the regression problem on dataset {φ(s, a), r(s, a) + γmaxa′ g(s′, a′)}.
Denote f̂g = argminf∈F

∑n
i=1(f(si, ai)− ri − γmaxa′ g(s′, a′)), as the least square solution.

Note that in this regression problem, we have |ri + γmaxa′ g(s′, a′)| ≤ 1 + γVmax ≤ 2Vmax, and for our Bayes
optimal solution, we have |T g(s, a)| = |r(s, a) + γEs′∼P (·|s,a) maxa′ g(s′, a′)| ≤ 1 + γVmax ≤ 2Vmax. Also note
that our inherent Bellman error condition implies that minf∈F Es,a∼ν(f(s, a) − T g(s, a))2 ≤ εapprox,ν . Thus, we
can apply Lemma A.11 directly here. With probability at least 1− δ, we get:

‖f̂g − T g‖22,ν ≤
22V 2

max ln(|F|/δ)
n

+ 20εapprox,ν .

Note that the above inequality holds for the fixed g. We apply a union bound over all possible g ∈ F , we get that with
probability at least 1− δ:

∀g ∈ F : ‖f̂g − T g‖22,ν ≤
22V 2

max ln(|F|2/δ)
n

+ 20εapprox,ν . (0.2)

Consider iteration t, set g = ft+1 in Eq. 0.2, and by the definition of ft, we have f̂g = ft in this case, which means that
above inequality in Eq. 0.2 holds for the pair (f̂g, g) = (ft, ft+1). Now apply a union bound over all t = 0, . . . ,K,
we conclude the proof.

Now we are ready to prove the main theorem.

Proof:[Proof of Theorem 4.3]

From Lemma 4.5, we see that with probability at least 1− δ, we have for all t ≤ K:

‖ft+1 − T ft‖2,ν ≤
√

22V 2
max ln(|F|2K/δ)

n
+
√

20εapprox,ν .

Set ε in Lemma 4.4 to be
√

22V 2
max ln(|F|2K/δ)

n +
√

20εapprox,ν , we conclude the proof.

4.2 Fitted Policy-Iteration (FPI)

to be added..
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4.3 Failure Cases Without Assumption 4.1

4.4 FQI for Policy Evaluation

4.5 Bibliographic Remarks and Further Readings

The notion of concentrability was developed in [Munos, 2003, 2005] in order to permitting sharper bounds in terms
of average case function approximation error, provided that the concentrability coefficient is bounded. These methods
also permit sample based fitting methods, with sample size and error bounds, provided there is a data collection policy
that induces a bounded concentrability coefficient [Munos, 2005, Szepesvári and Munos, 2005, Antos et al., 2008,
Lazaric et al., 2016]. Chen and Jiang [2019] provide a more detailed discussion on this quantity.
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Chapter 5

Statistical Limits of Generalization

In reinforcement learning, we seek to have learnability results which are applicable to cases where number of states
is large (or, possibly, countably or uncountably infinite). This is a question of generalization, which, more broadly, is
one of the central challenges in machine learning.

The previous two chapters largely focussed on sufficient conditions under which we can obtain sample complexity
results which do not explicitly depend on the size of the state (or action) space. This chapter focusses on what
are necessary conditions for generalization. Here, we can frame our questions by examining the extent to which
generalization in RL is similar to (or different from) that in supervised learning. Two most basic settings in supervised
learning are: (i) agnostic learning (i.e. finding the best classifier or hypothesis in some class) and (ii) learning with
linear models (i.e. learning the best linear regressor or the best linear classifier). This chapter will focus on lower
bounds with regards to the analogues of these two questions for reinforcement learning:

• (Agnostic learning) Given some hypothesis class (of policies, value functions, or models), what is the sample
complexity of finding (nearly) the best hypothesis in this class?

• (Linearly realizable values or policies) Suppose we are given some d-dimensional feature mapping where we
are guaranteed that either the optimal value function is linear in these given features or that the optimal policy
has a linear parameterization. Are we able to obtain sample complexity guarantees that are polynomial in d,
with little to no explicit dependence on the size of the state or action spaces? We will consider this question in
both the offline setting (for the purposes of policy evaluation, as in Chapter 3) and for in online setting where
our goal is to learn a near optimal optimal policy.

Observe that supervised learning can be viewed as horizon one, H = 1, RL problem (where the learner only receives
feedback for the “label”, i.e. the action, chosen). We can view the second question above as the analogue of linear
regression or classification with halfspaces. In supervised learning, both of these settings have postive answers, and
they are fundamental in our understanding of generalization. Perhaps surprisingly, we will see negative answers to
these questions in the RL setting. The significance of this provides insights as to why our study of generalization in
reinforcement learning is substantially more subtle than in supervised learning. Importantly, the insights we develop
here will also help us to motivate the more refined assumptions and settings that we consider in subsequent chapters
(see Section 5.3 for discussion).

This chapter will work with finite horizon MDPs, where we consider both the episodic setting and the generative
model setting. With regards to the first question on agnostic learning, this chapter follows the ideas first introduced
in [Kearns et al., 2000]. With regards to the second question on linear realizability, this chapter follows the results
in [Du et al., 2019, Wang et al., 2020a, Weisz et al., 2021a, Wang et al., 2021].
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5.1 Agnostic Learning

Suppose we have a hypothesis class H (either finite or infinite), where for each f ∈ H we have an associated policy
πf : S → A, which, for simplicity, we assume is deterministic. Here, we could have that:

• H itself is a class of policies.

• H is a set of state-action values, where for f ∈ H, we associate it with the greedy policy πf (s, h) = argmaxa fh(s, a),
where s ∈ S and h ∈ [H].

• H could be a class of models (i.e. each f ∈ H is an MDP itself). Here, for each f ∈ H, we can let πf be the
optimal policy in the MDP f .

We let Π denote the induced set of policies from our hypothesis classH, i.e. Π = {πf |f ∈ H}.
The goal of agnostic learning can be formulated by the following optimization problem:

max
π∈Π

Es0∼µV π(s0), (0.1)

where we are interested in the number of samples required to approximately solve this optimization problem. We will
work both in the episodic setting and the generative model setting, and, for simplicity, we will restrict ourselves to
finite hypothesis classes.

Binary classification as an H = 1 RL problem: Observe that the problem of binary classification can be viewed
as learning in an MDP with a horizon of one. In particular, take H = 1; take |A| = 2; let the distribution over starting
states s0 ∼ µ correspond to the input distribution; and take the reward function as r(s, a) = 1(label(s) = a). In other
words, we equate our action with the prediction of the binary class membership, and the reward function is determined
by if our prediction is correct or not.

5.1.1 Review: Binary Classification

One of the most important concepts for learning binary classifiers is that it is possible to generalize even when the
state space is infinite. Here note that the domain of our classifiers, often denoted by X , is analogous to the state
space S. We now briefly review some basics of supervised learning before we turn to the question of generalization in
reinforcement learning.

Consider the problem of binary classification with N labeled examples of the form (xi, yi)
N
i=1, with xi ∈ X and

yi ∈ {0, 1}. Suppose we have a (finite or infinte) set H of binary classifiers where each h ∈ H is a mapping of the
form h : X → {0, 1}. Let 1(h(x) 6= y) be an indicator which takes the value 0 if h(x) = y and 1 otherwise. We
assume that our samples are drawn i.i.d. according to a fixed joint distribution D over (x, y).

Define the empirical error and the true error as:

êrr(h) =
1

N

N∑
i=1

1(h(xi) 6= yi), err(h) = E(X,Y )∼D1(h(X) 6= Y ).

For a given h ∈ H, Hoeffding’s inequality implies that with probability at least 1− δ:

|err(h)− êrr(h)| ≤
√

1

2N
log

2

δ
.

This and the union bound give rise to what is often referred to as the “Occam’s razor” bound:
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Proposition 5.1. (The “Occam’s razor” bound) SupposeH is finite. Let ĥ = arg minh∈H êrr(h). With probability at
least 1− δ:

err(ĥ) ≤ min
h∈H

err(h) +

√
2

N
log

2|H|
δ

.

Hence, provided that

N ≥ 2 log 2|H|
δ

ε2
,

then with probability at least 1− δ, we have that:

err(ĥ) ≤ min
h∈H

err(h) + ε.

A key observation here is that the our regret — the regret is the left hand side of the above inequality — has no
dependence on the size of X (i.e. S) which may be infinite and is only logarithmic in the number of hypothesis in our
class.

5.1.2 Importance Sampling and a Reduction to Supervised Learning

Now let us return to the agnostic learning question in Equation 0.1. We will see that, provided we are willing to be
exponential in the horizon H , then agnostic learning is possible. Furthermore, it is a straightforward argument to see
that we are not able to do better.

An Occam’s Razor Bound for RL

We now provide a reduction of RL to the supervised learning problem, given only sampling access in the episodic
setting. The key issue is how to efficiently reuse data. The idea is that we will simply collect N trajectories by
executing a policy which chooses actions uniformly at random; let UnifA denote this policy.

The following shows how we can obtain an unbiased estimate of the value of any policy π using this uniform policy
UnifA:

Lemma 5.2. (Unbiased estimation of V π0 (µ)) Let π be any deterministic policy. We have that:

V π0 (µ) = |A|H · Eτ∼PrUnifA

[
1
(
π(s0) = a0, . . . , π(sH−1) = aH−1

)H−1∑
h=0

r(sh, ah)

]
where PrUnifA specifies the distribution over trajectories τ = (s0, a0, r0, . . . sH−1, aH−1, rH−1) under the policy
UnifA.

The proof follows from a standard importance sampling argument (applied to the distribution over the trajectories).
Proof: We have that:

V π0 (µ) = Eτ∼Prπ

[
H−1∑
h=0

rh

]

= Eτ∼PrUnifA

[
Prπ(τ)

PrUnifA(τ)

H−1∑
h=0

rh

]

= |A|H · Eτ∼PrUnifA

[
1
(
π(s0) = a0, . . . , π(sH−1) = aH−1

)H−1∑
h=0

rh

]
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where the last step follows due to that the probability ratio is only nonzero when UnifA choose actions identical to that
of π.

Crudely, the factor of |A|H is due to that the estimated reward of π on a trajectory is nonzero only when π takes
exactly identical actions to those taken by UnifA on the trajectory, which occurs with probability 1/|A|H .

Now, given sampling access in the episodic model, we can use UnifA to get any estimate of any other policy π ∈ Π.
Note that the factor of |A|H in the previous lemma will lead to this approach being a high variance estimator. Suppose
we draw N trajectories under UnifA. Denote the n-th sampled trajectory by (sn0 , a

n
0 , r

n
1 , s

n
1 , . . . , s

n
H−1, a

n
H−1, r

n
H−1).

We can then use following to estimate the finite horizon reward of any given policy π:

V̂ π0 (µ) =
|A|H
N

N∑
n=1

1
(
π(sn0 ) = an0 , . . . π(snH−1) = anH−1

)H−1∑
t=0

r(snt , a
n
t ).

Proposition 5.3. (An “Occam’s razor bound” for RL) Let δ ≥ 0. Suppose Π is a finite and suppose we use the
aforementioned estimator, V̂ π0 (µ), to estimate the value of every π ∈ Π. Let π̂ = arg maxπ∈Π V̂

π
0 (µ). We have that

with probability at least 1− δ,

V π̂0 (µ) ≥ max
π∈Π

V π0 (µ)−H|A|H
√

2

N
log

2|Π|
δ
.

Proof: Note that, fixing π, our estimator is sum of i.i.d. random variables, where each independent estimator,
|A|H1

(
π(sn0 ) = an0 , . . . π(snH−1) = anH−1

)∑H−1
t=0 r(snt , a

n
t ), is bounded by H|A|H . The remainder of the argu-

ment is identical to that used in Proposition 5.1.

Hence, provided that

N ≥ H|A|H 2 log(2|Π|/δ)
ε2

,

then with probability at least 1− δ, we have that:

V π̂0 (s0) ≥ max
π∈Π

V π0 (s0)− ε.

This is the analogue of the Occam’s razor bound for RL.

Importantly, the above shows that we can avoid dependence on the size of the state space, though this comes at the
price of an exponential dependence on the horizon. As we see in the next section, this dependence is unavoidable
(without making further assumptions).

Infinite Policy Classes. In the supervised learning setting, a crucial observation is that even though a hypothesis
set H of binary classifiers may be infinite, we may still be able to obtain non-trivial generalization bounds. A crucial
observation here is that even though the set H may be infinite, the number of possible behaviors of on a finite set
of states is not necessarily exhaustive. The Vapnik–Chervonenkis (VC) dimension of H, V C(H), is formal way to
characterize this intuition, and, using this concept, we are able to obtain generalization bounds in terms of the V C(H).

With regards to infinite hypothesis classes of policies (say for the case where |A| = 2), extending our Occam’s razor
bound can be done with precisely the same approach. In particular, when |A| = 2, each π ∈ Π can be viewed as
Boolean function, and this gives rise to the VC dimension VC(Π) of our policy class. The bound in Proposition 5.3
can be replaced with a VC-dimension bound that is analogous to that of binary classification (see Section 5.4).

Lower Bounds

Clearly, the drawback of this agnostic learning approach is that we would require a number of samples that is expo-
nential in the problem horizon. We now see that if we desire a sample complexity that scales with O(log |Π|), then an
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exponential dependence on the effective horizon is unavoidable, without making further assumptions.

Here, our lower bound permits a (possibly randomized) algorithm to utilize a generative model (which is a more
powerful sampling model than the episodic one).

Proposition 5.4. (Lower Bound with a Generative Model) Suppose algorithm A has access to a generative model.
There exists a policy class Π, where |Π| = |A|H such that if algorithm A returns any policy π (not necessarily in Π)
such that

V π0 (µ) ≥ max
π∈Π

V π0 (µ)− 0.5.

with probability greater than 1/2, then A must make a number of number calls N to the generative model where:

N ≥ c|A|H

(where c is an absolute constant).

Proof: The proof is simple. Consider a |A|-ary balanced tree, with |A|H states and |A| actions, where states corre-
spond nodes and actions correspond to edges; actions always move the agent from the root towards a leaf node. We
make only one leaf node rewarding, which is unknown to the algorithm. We consider the policy class to be all |A|H
policies. The theorem now immediately follows since the algorithm gains no knowledge of the rewarding leaf node
unless it queries that node.

Note this immediately rules out the possibility that any algorithm which can obtain a log |Π| dependence without
paying a factor of |A|H in the sample size due to that log |Π| = H log |A| in the example above.

5.2 Linear Realizability

In supervised learning, two of the most widely studied settings are those of linear regression and binary classification
with halfspaces. In both settings, we are able to obtain sample complexity results that are polynomial in the feature
dimension. We now consider the analogue of these assumptions for RL, starting with the analogue of linear regression.

When the state space is large or infinite, we may hope that linearly realizability assumptions may permit a more sample
efficient approach. We will start with linear realizability on Qπ and consider the offline policy evaluation problem.
Then we will consider the problem of learning with only a linearly realizability assumption on Q? (along with access
to either a generative model or sampling access in the episodic setting).

5.2.1 Offline Policy Evaluation with Linearly Realizable Values

In Chapter 3, we observed that the LSVI and LSPE algorithm could be used with an offline dataset for the purposes
of policy evaluation. Here, we made the linear Bellman completeness assumption on our features. Let us now show
that with only a linear realizability assumption, then not only is LSPE sample inefficient but we will also see that,
information theoretically, every algorithm is sample inefficient, in a minmax sense.

This section is concerned with the offline RL setting. In this setting, the agent does not have direct access to the MDP
and instead is given access to data distributions {µh}H−1

h=0 where for each h ∈ [H], µh ∈ ∆(Sh × A). The inputs
of the agent are H datasets {Dh}H−1

h=0 , and for each h ∈ [H], Dh consists i.i.d. samples of the form (s, a, r, s′) ∈
Sh ×A× R× Sh+1 tuples, where (s, a) ∼ µh, r ∼ r(s, a), s′ ∼ P (s, a).

We now focus on the offline policy evaluation problem: given a policy π : S → ∆ (A) and a feature mapping
φ : S × A → Rd, the goal is to output an accurate estimate of the value of π (i.e., V π) approximately, using the
collected datasets {Dh}H−1

h=0 , with as few samples as possible.
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We will make the following linear realizability assumption with regards to a feature mapping φ : S ×A → Rd, which
we can think of as either being hand-crafted or coming from a pre-trained neural network that transforms a state-
action pair to a d-dimensional embedding, and the Q-functions can be predicted by linear functions of the features. In
particular, this section will assume the following linear realizability assumption with regards to every policy π.

Assumption 5.5 (Realizable Linear Function Approximation). For every policy π : S → ∆(A), there exists θπ0 , . . . θ
π
H−1 ∈

Rd such that for all (s, a) ∈ S ×A and h ∈ [H],

Qπh(s, a) = (θπh)
>
φ(s, a).

Note that this assumption is substantially stronger than assuming realizability with regards to a single target policy π
(say the policy that we wish to evaluate); this assumption imposes realizability for all policies.

We will also assume a coverage assumption, analogous to Assumption 3.6. It should be evident that without feature
coverage in our dataset, realizability alone is clearly not sufficient for sample-efficient estimation. Note that , we will
make the strongest possible assumption, with regards to the conditioning of the feature covariance matrix; in particular,
this assumption is equivalent to µ being a D-optimal design.

Assumption 5.6 (Coverage). For all (s, a) ∈ S × A, assume our feature map is bounded such that ‖φ(s, a)‖2 ≤ 1.
Furthermore, suppose for each h ∈ [H], the data distributions µh satisfies the following:

E(s,a)∼µh [φ(s, a)φ(s, a)>] =
1

d
I.

Note that the minimum eigenvalue of the above matrix is 1/d, which is the largest possible minimum eigenvalue over
all data distributions µ̃h, since σmin(E(s,a)∼µ̃h [φ(s, a)φ(s, a)>]) is less than or equal to 1/d (due to that ‖φ(s, a)‖2 ≤
1 for all (s, a) ∈ S ×A). Also, it is not difficult to see that this distribution satisfies the D-optimal design property.

Clearly, for the case where H = 1, the realizability assumption (Assumption 5.5), and coverage assumption (As-
sumption 5.6) imply that the ordinary least squares estimator will accurately estimate θπ0 . The following shows these
assumptions are not sufficient for offline policy evaluation for long horizon problems.

Theorem 5.7. Suppose Assumption 5.6 holds. Fix an algorithm that takes as input both a policy and a feature
mapping. There exists a (deterministic) MDP satisfying Assumption 5.5, such that for any policy π : S → ∆(A),
the algorithm requires Ω((d/2)H) samples to output the value of π up to constant additive approximation error with
probability at least 0.9.

Although we focus on offline policy evaluation, this hardness result also holds for finding near-optimal policies under
Assumption 5.5 in the offline RL setting with linear function approximation. Below we give a simple reduction. At
the initial state, if the agent chooses action a1, then the agent receives a fixed reward value (say 0.5) and terminates.
If the agent chooses action a2, then the agent transits to the hard instance. Therefore, in order to find a policy with
suboptimality at most 0.5, the agent must evaluate the value of the optimal policy in the hard instance up to an error
of 0.5, and hence the hardness result holds.

Least-Squares Policy Evaluation (LSPE) has exponential variance. For offline policy evaluation with linear func-
tion approximation, it is not difficult to see that LSPE, Algorithm 2, will provide an unbiased estimate (provided the
feature covariance matrices are full rank, which will occur with high probability). Interestingly, as a direct corollary,
the above theorem implies that LSPE has exponential variance in H . More generally, this theorem implies that there
is no estimator that can avoid such exponential dependence in the offline setting.
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Figure 0.1: An illustration of the hard instance. Recall that d̂ = d/2. States on the top are those in the first level
(h = 0), while states at the bottom are those in the last level (h = H − 1). Solid line (with arrow) corresponds to
transitions associated with action a1, while dotted line (with arrow) corresponds to transitions associated with action
a2. For each level h ∈ [H], reward values and Q-values associated with s1

h, s
2
h, . . . , s

d̂
h are marked on the left, while

reward values and Q-values associated with sd̂+1
h are mark on the right. Rewards and transitions are all deterministic,

except for the reward distributions associated with s1
H−1, s

2
H−1, . . . , s

d̂
H−1. We mark the expectation of the reward

value when it is stochastic. For each level h ∈ [H], for the data distribution µh, the state is chosen uniformly at random
from those states in the dashed rectangle, i.e., {s1

h, s
2
h, . . . , s

d̂
h}, while the action is chosen uniformly at random from

{a1, a2}. Suppose the initial state is sd̂+1
1 . When r∞ = 0, the value of the policy is 0. When r∞ = d̂−H/2, the value

of the policy is r∞ · d̂H/2 = 1.

A Hard Instance for Offline Policy Evaluation

We now provide the hard instance construction and the proof of Theorem 5.7. We use d to denote the feature dimension,
and we assume d is even for simplicity. We use d̂ to denote d/2 for convenience. We also provide an illustration of the
construction in Figure 0.1.

State Space, Action Space and Transition Operator. The action space A = {a1, a2}. For each h ∈ [H], Sh
contains d̂+1 states s1

h, s
2
h, . . . , s

d̂
h and sd̂+1

h . For each h ∈ {0, 1, . . . ,H−2}, for each c ∈ {1, 2, . . . , d̂+1}, we have

P (s|sch, a) =


1 s = sd̂+1

h+1, a = a1

1 s = sch+1, a = a2

0 else

.
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Reward Distributions. Let 0 ≤ r∞ ≤ d̂−H/2 be a parameter to be determined. For each (h, c) ∈ {0, 1, . . . ,H −
2} × [d̂] and a ∈ A, we set r(sch, a) = 0 and r(sd̂+1

h , a) = r∞ · (d̂1/2 − 1) · d̂(H−h−1)/2. For the last level, for each
c ∈ [d̂] and a ∈ A, we set

r(scH−1, a) =

{
1 with probability (1 + r∞)/2

−1 with probability (1− r∞)/2

so that E[r(scH−1, a)] = r∞. Moreover, for all actions a ∈ A, r(sd̂+1
H−1, a) = r∞ · d̂1/2.

Feature Mapping. Let e1, e2, . . . , ed be a set of orthonormal vectors in Rd. Here, one possible choice is to set
e1, e2, . . . , ed to be the standard basis vectors. For each (h, c) ∈ [H]× [d̂], we set φ(sch, a1) = ec, φ(sch, a2) = ec+d̂,
and

φ(sd̂+1
h , a) =

1

d̂1/2

∑
c∈d̂

ec

for all a ∈ A.

Verifying Assumption 5.5. Now we verify that Assumption 5.5 holds for this construction.

Lemma 5.8. For every policy π : S → ∆(A), for each h ∈ [H], for all (s, a) ∈ Sh × A, we have Qπh(s, a) =

(θπh)
>
φ(s, a) for some θπh ∈ Rd.

Proof: We first verify Qπ is linear for the first H − 1 levels. For each (h, c) ∈ {0, 1, . . . ,H − 2} × [d̂], we have

Qπh(sch, a1) =r(sch, a1) + r(sd̂+1
h+1, a1) + r(sd̂+1

h+2, a1) + . . .+ r(sd̂+1
H−1, a1) = r∞ · d̂(H−h−1)/2.

Moreover, for all a ∈ A,

Qπh(sd̂+1
h , a) =r(sd̂+1

h , a) + r(sd̂+1
h+1, a1) + r(sd̂+1

h+2, a1) + . . .+ r(sd̂+1
H−1, a1) = r∞ · d̂(H−h)/2.

Therefore, if we define

θπh =

d̂∑
c=1

r∞ · d̂(H−h−1)/2 · ec +

d̂∑
c=1

Qπh(sch, a2) · ec+d̂,

then Qπh(s, a) = (θπh)
>
φ(s, a) for all (s, a) ∈ Sh ×A.

Now we verify that theQ-function is linear for the last level. Clearly, for all c ∈ [d̂] and a ∈ A,QπH−1(scH−1, a) = r∞

and QπH−1(sd̂+1
H−1, a) = r∞ ·

√
d̂. Thus by defining θπH−1 =

∑d
c=1 r∞ · ec, we have QπH−1(s, a) =

(
θπH−1

)>
φ(s, a)

for all (s, a) ∈ SH−1 ×A.

The Data Distributions. For each level h ∈ [H], the data distribution µh is a uniform distribution over the set
{(s1

h, a1), (s1
h, a2), (s2

h, a1), (s2
h, a2), . . . , (sd̂h, a1), (sd̂h, a2)}. Notice that (sd̂+1

h , a) is not in the support of µh for all
a ∈ A. It can be seen that,

E(s,a)∼µh
[
φ(s, a)φ(s, a)>

]
=

1

d

d∑
c=1

ece
>
c =

1

d
I.
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The Information-Theoretic Argument

We show that it is information-theoretically hard for any algorithm to distinguish the case r∞ = 0 and r∞ = d̂−H/2.
We fix the initial state to be sd̂+1

0 , and consider any policy π : S → ∆(A). When r∞ = 0, all reward values will
be zero, and thus the value of π would be zero. On the other hand, when r∞ = d̂−H/2, the value of π would be
r∞ · d̂H/2 = 1. Thus, if the algorithm approximates the value of the policy up to an error of 1/2, then it must
distinguish the case that r∞ = 0 and r∞ = d̂−H/2.

We first notice that for the case r∞ = 0 and r∞ = d̂−H/2, the data distributions {µh}H−1
h=0 , the feature mapping

φ : S ×A → Rd, the policy π to be evaluated and the transition operator P are the same. Thus, in order to distinguish
the case r∞ = 0 and r∞ = d̂−H/2, the only way is to query the reward distribution by using sampling taken from the
data distributions.

For all state-action pairs (s, a) in the support of the data distributions of the first H − 1 levels, the reward distributions
will be identical. This is because for all s ∈ Sh \ {sd̂+1

h } and a ∈ A, we have r(s, a) = 0. For the case r∞ = 0 and
r∞ = d̂−H/2, for all state-action pairs (s, a) in the support of the data distribution of the last level,

r(s, a) =

{
1 with probability (1 + r∞)/2

−1 with probability (1− r∞)/2
.

Therefore, to distinguish the case that r∞ = 0 and r∞ = d̂−H/2, the agent needs to distinguish two reward distribu-
tions

r(1) =

{
1 with probability 1/2

−1 with probability 1/2

and

r(2) =

{
1 with probability (1 + d̂−H/2)/2

−1 with probability (1− d̂−H/2)/2
.

It is standard argument that in order to distinguish r(1) and r(2) with probability at least 0.9, any algorithm requires
Ω(d̂H) samples.

The key in this construction is the state sd̂+1
h in each level, whose feature vector is defined to be

∑
c∈d̂ ec/d̂

1/2. In

each level, sd̂+1
h amplifies the Q-values by a d̂1/2 factor, due to the linearity of the Q-function. After all the H levels,

the value will be amplified by a d̂H/2 factor. Since sd̂+1
h is not in the support of the data distribution, the only way for

the agent to estimate the value of the policy is to estimate the expected reward value in the last level. This construction
forces the estimation error of the last level to be amplified exponentially and thus implies an exponential lower bound.

5.2.2 Linearly Realizable Q?

Specifically, we will assume access to a feature map φ : S × A → Rd, and we will assume that a linear function of φ
can accurately represent the Q?-function. Specifically,

Assumption 5.9 (Linear Q? Realizability). For all h ∈ [H], assume there exists θ∗h ∈ Rd such that for all (s, a) ∈
S ×A,

Q∗h(s, a) = θ∗h · φ(s, a).

The hope is that this assumption may permit a sample complexity that is polynomial in d and H , with no explicit |S|
or |A| dependence.

Another assumption that we will use is that the minimum suboptimality gap is lower bounded.
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Figure 0.2: The Leaking Complete Graph Construction. Illustration of a hard MDP. There are m + 1 states in the
MDP, where f is an absorbing terminal state. Starting from any non-terminal state a, regardless of the action, there is
at least α = 1/6 probability that the next state will be f .

Assumption 5.10 (Constant Sub-optimality Gap). For any state s ∈ S , a ∈ A, the suboptimality gap is defined as
∆h(s, a) := V ∗h (s)−Q∗h(s, a). We assume that

min
h∈[H],s∈S,a∈A

{∆h(s, a) : ∆h(s, a) > 0} ≥ ∆min.

The hope is that with a “large gap”, the identification of the optimal policy itself (as opposed to just estimating its
value accurately) may be statistically easier, thus making the problem easier.

We now present two hardness results. We start with the case where we have access to a generative model.

Theorem 5.11. (Linear Q?; Generative Model Case) Consider any algorithm A which has access to a generative
model and which takes as input the feature mapping φ : S ×A → Rd. There exists an MDP with a feature mapping φ
satisfying Assumption 5.9 and where the size of the action space is |A| = c1dmin{d1/4, H1/2}e such that if A (when
given φ as input) finds a policy π such that

Es1∼µV π(s1) ≥ Es1∼µV ∗(s1)− 0.05

with probability 0.1, then A requires min{2c2d, 2c2H} samples (c1 and c2 are absolute constants).

Note that theorem above uses an MDP whose size of the action space is only of moderate size (actually sublinear in
both d and H). Of course, in order to prove such a result, we must rely on a state space which is exponential in d or H
(else, we could apply a tabular algorithm to obtain a polynomial result). The implications of the above show that the
linear Q? assumption, alone, is not sufficient for sample efficient RL, even with access to a generative model.

We now see that in the (online) episodic setting, even if we have a constant gap in the MDP, the hardness of learning
is still unavoidable.

Theorem 5.12. (Linear Q? Realizability + Gap; Episodic Setting) Consider any algorithmA which has access to the
episodic sampling model and which takes as input the feature mapping φ : S ×A → Rd. There exists an MDP with a
feature mapping φ satisfying Assumption 5.9 and Assumption 5.10 (where ∆min is an absolute constant) such that if
A (using φ as input) finds a policy π such that

Es1∼µV π(s1) ≥ Es1∼µV ∗(s1)− 0.05

with probability 0.1, then A requires min{2cd, 2cH} samples (where c is an absolute constant).
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The theorem above also holds with an MDP whose action space is of size |A| = Ω(dmin{d1/4, H1/2}e). However,
for ease of exposition, we will present a proof of this theorem that uses a number of actions that is exponential in d
(see Section 5.4).

Linear Q? Realizability + Gap; Generative Model Case. For this case, it is not difficult to see that, with a gen-
erative model, it is possible to exactly learn an optimal policy with a number of samples that is poly(d,H, 1/∆min)
(see Section 5.4). The key idea is that, at the last stage, the large gap permits us to learn the optimal policy itself
(using linear regression). Furthermore, if we have an optimal policy from timestep h onwards, then we are able to
obtain unbiased estimates of Q?h−1(s, a), at any state action pair, using the generative model. We leave the proof as an
exercise to the interested reader.

A Hard Instance with Constant Suboptimality Gap

We now prove Theorem 5.12, and we do not prove Theorem 5.11 (see Section 5.4). The remainder of this section
provides the construction of a hard family of MDPs whereQ∗ is linearly realizable and has constant suboptimality gap
and where it takes exponential samples to learn a near-optimal policy. Each of these hard MDPs can roughly be seen
as a “leaking complete graph” (see Fig. 0.2). Information about the optimal policy can only be gained by: (1) taking
the optimal action; (2) reaching a non-terminal state at level H . We will show that when there are exponentially many
actions, either events happen with negligible probability unless exponentially many trajectories are played.

Letm be an integer to be determined. The state space is {1̄, · · · , m̄, f}. The special state f is called the terminal state.
The action space is simply A = {1, 2, . . . ,m}. Each MDP in this family is specified by an index a∗ ∈ {1, 2, . . . ,m}
and denoted by Ma∗ . In other words, there are m MDPs in this family. We will make use of a (large) set of
approximately orthogonal vectors, which exists by the Johnson-Lindenstrauss lemma. We state the following lemma
without proof:

Lemma 5.13 (Johnson-Lindenstrauss). For any α > 0, if m ≤ exp( 1
8α

2d′), there exists m unit vectors {v1, · · · , vm}
in Rd′ such that ∀i, j ∈ {1, 2, . . . ,m} such that i 6= j, |〈vi, vj〉| ≤ α.

We will set α = 1
6 and m = bexp( 1

8α
2d)c. By Lemma 5.13, we can find such a set of d-dimensional unit vectors

{v1, · · · , vm}. For the clarity of presentation, we will use vi and v(i) interchangeably. The construction ofMa∗ is
specified below. Note that in this construction, the features, the rewards and the transitions are defined for all a1, a2

with a1, a2 ∈ {1, 2, . . . ,m} and a1 6= a2. In particular, this construction is properly defined even when a1 = a∗.

Features. The feature map, which maps state-action pairs to d+ 1 dimensional vectors, is defined as follows.

φ(a1, a2) :=
(

0,
(〈
v(a1), v(a2)

〉
+ 2α

)
· v(a2)

)
, (∀a1, a2 ∈ {1, 2, . . . ,m}, a1 6= a2)

φ(a1, a1) :=

(
3

4
α,0

)
, (∀a1 ∈ {1, 2, . . . ,m})

φ(f, 1) = (0,0) ,

φ(f, a) := (−1,0) . (∀a 6= 1)

Here 0 is the zero vector in Rd. Note that the feature map is independent of a∗ and is shared across the MDP family.
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Rewards. For h ∈ [H], the rewards are defined as

rh(a1, a
∗) :=

〈
v(a1), v(a∗)

〉
+ 2α, (a1 6= a∗)

rh(a1, a2) := −2α
[〈
v(a1), v(a2)

〉
+ 2α

]
, (a2 6= a∗, a2 6= a1)

rh(a1, a1) :=
3

4
α, (∀a1)

rh(f, 1) := 0,

rh(f, a) := −1. (a 6= 1)

For h = H − 1, rH−1(s, a) := 〈φ(s, a), (1, v(a∗))〉 for every state-action pair.

Transitions. The initial state distribution µ is set as a uniform distribution over {1̄, · · · , m̄}. The transition proba-
bilities are set as follows.

Pr[f |a1, a
∗] = 1,

Pr[f |a1, a1] = 1,

Pr[·|a1, a2] =

a2 :
〈
v(a1), v(a2)

〉
+ 2α

f : 1−
〈
v(a1), v(a2)

〉
− 2α

, (a2 6= a∗, a2 6= a1)

Pr[f |f, ·] = 1.

After taking action a2, the next state is either a2 or f . Thus this MDP looks roughly like a “leaking complete graph”
(see Fig. 0.2): starting from state a, it is possible to visit any other state (except for a∗); however, there is always at
least 1− 3α probability of going to the terminal state f . The transition probabilities are indeed valid, because

0 < α ≤
〈
v(a1), v(a2)

〉
+ 2α ≤ 3α < 1.

We now verify that realizability, i.e. Assumption 5.9, is satisfied.

Lemma 5.14. (Linear realizability) In the MDP Ma∗ , ∀h ∈ [H], for any state-action pair (s, a), Q∗h(s, a) =
〈φ(s, a), θ∗〉 with θ∗ = (1, v(a∗)).

Proof: We first verify the statement for the terminal state f . Observe that at the terminal state f , the next state is
always f and the reward is either 0 (if action 1 is chosen) or −1 (if an action other than 1 is chosen). Hence, we have

Q∗h(f, a) =

{
0 a = 1

−1 a 6= 1

and
V ∗h (f) = 0.

This implies Q∗h(f, ·) = 〈φ(f, ·), (1, v(a∗))〉.
We now verify realizability for other states via induction on h = H − 1, · · · , 0. The induction hypothesis is that for
all a1, a2 ∈ {1, 2, . . . ,m}, we have

Q∗h(a1, a2) =

{
(〈v(a1), v(a2)〉+ 2α) · 〈v(a2), v(a∗)〉 a1 6= a2

3
4α a1 = a2

(0.2)
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and

V ∗h (a1) =

{
〈v(a1), v(a∗)〉+ 2α a1 6= a∗

3
4α a1 = a∗

. (0.3)

Note that (0.2) implies that realizability is satisfied. In the remaining part of the proof we verify Eq. (0.2) and (0.3).

When h = H − 1, (0.2) holds by the definition of rewards. Next, note that for all h ∈ [H], (0.3) follows from (0.2).
This is because for all a1 6= a∗, for all a2 /∈ {a1, a

∗}.

Q∗h(a1, a2) = (〈v(a1), v(a2)〉+ 2α) · 〈v(a2), v(a∗)〉 ≤ 3α2,

Moreover, for all a1 6= a∗,

Q∗h(a1, a1) =
3

4
α < α.

Furthermore, for all a1 6= a∗,

Q∗h(a1, a
∗) = 〈v(a1), v(a∗)〉+ 2α ≥ α > 3α2.

In other words, (0.2) implies that a∗ is always the optimal action for all state a1 with a1 6= a∗. Now, for state a∗, for
all a 6= a∗, we have

Q∗h(a∗, a) = (〈v(a∗), v(a)〉+ 2α) · 〈v(a∗), v(a)〉 ≤ 3α2 <
3

4
α = Q∗h(a∗, a∗).

Hence, (0.2) implies that a∗ is always the optimal action for all states a with a ∈ {1, 2, . . . ,m}.
Thus, it remains to show that (0.2) holds for h assuming (0.3) holds for h + 1. Here we only consider the case that
a2 6= a1 and a2 6= a∗, since otherwise Pr[f |a1, a2] = 1 and thus (0.2) holds by the definition of the rewards and the
fact that V ∗h (f) = 0. When a2 /∈ {a1, a

∗}, we have

Q∗h(a1, a2) = rh(a1, a2) + Esh+1

[
V ∗h+1(sh+1)

∣∣ a1, a2

]
= −2α

[〈
v(a1), v(a2)

〉
+ 2α

]
+ Pr[sh+1 = a2] · V ∗h+1(a2) + Pr[sh+1 = f ] · V ∗h+1(f)

= −2α
[〈
v(a1), v(a2)

〉
+ 2α

]
+
[〈
v(a1), v(a2)

〉
+ 2α

]
·
(〈
v(a2), v(a∗)

〉
+ 2α

)
=
(〈
v(a1), v(a2)

〉
+ 2α

)
·
〈
v(a2), v(a∗)

〉
.

This is exactly (0.2) for h. Hence both (0.2) and (0.3) hold for all h ∈ [H].

We now verify the constant sub-optimality gap, i.e. Assumption 5.10, is satisfied.

Lemma 5.15. (Constant Gap) Assumption 5.10 is satisfied with ∆min = 1/24.

Proof: From Eq. (0.2) and (0.3), it is easy to see that at state a1 6= a∗, for a2 6= a∗, the suboptimality gap is

∆h(a1, a2) := V ∗h (a1)−Q∗h(a1, a2) ≥ α−max

{
3α2,

3

4
α

}
=

1

24
.

Moreover, at state a∗, for a 6= a∗, the suboptimality gap is

∆h(a∗, a) := V ∗h (a∗)−Q∗h(a∗, a) ≥ 3

4
α− 3α2 =

1

24
.

Finally, for the terminal state f , the suboptimality gap is obviously 1. Therefore ∆min ≥ 1
24 for all MDPs under

consideration.
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The Information-Theoretic Argument

We provide a proof sketch for the lower bound below in Theorem 5.12.

Proof sketch. We will show that for any algorithm, there exists a∗ ∈ {1, 2, . . . ,m} such that in order to output π
with

Es1∼µV π(s1) ≥ Es1∼µV ∗(s1)− 0.05

with probability at least 0.1 forMa∗ , the number of samples required is 2Ω(min{d,H}).

Observe that the feature map of Ma∗ does not depend on a∗, and that for h < H − 1 and a2 6= a∗, the reward
Rh(a1, a2) also contains no information about a∗. The transition probabilities are also independent of a∗, unless the
action a∗ is taken. Moreover, the reward at state f is always 0. Thus, to receive information about a∗, the agent either
needs to take the action a∗, or be at a non-game-over state at the final time step (h = H − 1).

However, note that the probability of remaining at a non-terminal state at the next layer is at most

sup
a1 6=a2

〈v(a1), v(a2)〉+ 2α ≤ 3α ≤ 3

4
.

Thus for any algorithm, Pr[sH−1 6= f ] ≤
(

3
4

)H
, which is exponentially small.

In other words, any algorithm that does not know a∗ either needs to “be lucky” so that sH−1 = f , or needs to take a∗

“by accident”. Since the number of actions is m = 2Θ(d), either event cannot happen with constant probability unless
the number of episodes is exponential in min{d,H}.
In order to make this claim rigorous, we can construct a reference MDPM0 as follows. The state space, action space,
and features ofM0 are the same as those ofMa. The transitions are defined as follows:

Pr[·|a1, a2] =

a2 :
〈
v(a1), v(a2)

〉
+ 2α

f : 1−
〈
v(a1), v(a2)

〉
− 2α

, (∀a1, a2 s.t. a1 6= a2)

Pr[f |f, ·] = 1.

The rewards are defined as follows:

rh(a1, a2) := −2α
[〈
v(a1), v(a2)

〉
+ 2α

]
, ( ∀a1, a2 s.t. a1 6= a2)

rh(f, ·) := 0.

Note thatM0 is identical toMa∗ , except when a∗ is taken, or when an trajectory ends at a non-terminal state. Since
the latter event happens with an exponentially small probability, we can show that for any algorithm the probability of
taking a∗ inMa∗ is close to the probability of taking a∗ inM0. SinceM0 is independent of a∗, unless an exponential
number of samples are used, for any algorithm there exists a∗ ∈ {1, 2, . . . ,m} such that the probability of taking a∗

inM0 is o(1). It then follows that the probability of taking a∗ inMa∗ is o(1). Since a∗ is the optimal action for every
state, such an algorithm cannot output a near-optimal policy forMa∗ .

5.2.3 Linearly Realizable π?

Similar to value-based learning, a natural assumption for policy-based learning is that the optimal policy is realizable
by a halfspace.
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Assumption 5.16 (Linear π∗ Realizability). For any h ∈ [H], there exists θ?h ∈ Rd that satisfies for any s ∈ S, we
have

π∗ (s) ∈ argmaxa 〈θh, φ (s, a)〉 .

As before (and as is natural in supervised learning), we will also consider the case where there is a large margin (which
is analogous to previous large gap assumption).

Assumption 5.17 (Constant Margin). Without loss of generality, assume the scalings are such that for all (s, a, h) ∈
S ×A× [H], ‖φ(s, a)‖2 ≤ 1 and ‖θ?h‖ ≤ 1 Now suppose that for all s ∈ S and any a /∈ π∗(s),

〈θh, φ (s, π∗(s))〉 − 〈θh, φ (s, a)〉 ≥ ∆min.

Here we restrict the linear coefficients and features to have unit norm for normalization.

We state the following without proof (see Section 5.4):

Theorem 5.18. (Linear π? Realizability + Margin) Consider any algorithm A which has access to a generative
model and which takes as input the feature mapping φ : S ×A → Rd. There exists an MDP with a feature mapping φ
satisfying Assumption 5.16 and Assumption 5.17 (where ∆min is an absolute constant) such that ifA (with φ as input)
finds a policy π such that

Es1∼µV π(s1) ≥ Es1∼µV ∗(s1)− 0.05

with probability 0.1, then A requires min{2cd, 2cH} samples, where c is an absolute constant.

5.3 Discussion: Studying Generalization in RL

The previous lower bounds shows that: (i) without further assumptions, agnostic learning (in the standard supervised
learning sense) is not possible in RL, unless we can tolerate an exponential dependence on the horizon, and (ii) simple
realizability assumptions are also not sufficient for sample efficient RL.

This motivates the study of RL to settings where we either make stronger assumptions or have a means in which the
agent can obtain side information. Three examples of these approaches that are considered in this book are:

• Structural (and Modelling) Assumptions: By making stronger assumptions about the how the hypothesis class
relates to the underlying MDP, we can move away from agnostic learning lower bound. We have seen one
example of this with the stronger Bellman completeness assumption that we considered in Chapter 3. We will
see more examples of this in Part 2.

• Distribution Dependent Results (and Distribution Shift): We have seen one example of this approach when we
consider the approximate dynamic programming approach in Chapter 4. When we move to policy gradient
methods (in Part 3), we will also consider results which depend on the given distribution (i.e. where we suppose
our starting state distribution µ has some reasonable notion of coverage).

• Imitation Learning and Behavior Cloning: here we will consider settings where the agent has input from, effec-
tively, a teacher, and we see how this can circumvent statistical hardness results.

5.4 Bibliographic Remarks and Further Readings

The reduction from reinforcement learning to supervised learning was first introduced in [Kearns et al., 2000], which
used a different algorithm (the “trajectory tree” algorithm), as opposed to the importance sampling approach presented
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here. [Kearns et al., 2000] made the connection to the VC dimension of the policy class. The fundamental sample
complexity tradeoff — between polynomial dependence on the size of the state space and exponential dependence on
the horizon — was discussed in depth in [Kakade, 2003].

Utilizing linear methods for dynamic programming goes back to, at least, [Shannon, 1959, Bellman and Dreyfus,
1959]. Formally considering the linear Q? assumption goes back to at least [Wen and Van Roy, 2017]. Resolving
the learnability under this assumption was an important open question discussed in [Du et al., 2019], which is now
resolved. In the offline (policy evaluation) setting, the lower bound in Theorem 5.7 is due to [Wang et al., 2020a,
Zanette, 2021]. With a generative model, the breakthrough result of [Weisz et al., 2021a] established the impossibility
result with the linear Q? assumption. Furthermore, Theorem 5.12, due to [Wang et al., 2021], resolves this question in
the online setting with the additional assumption of having a constant sub-optimality gap. Also, [Weisz et al., 2021b]
extends the ideas from [Weisz et al., 2021a], so that the lower bound is applicable with action spaces of polynomial
size (in d and H); this is the result we use for Theorem 5.11.

Theorem 5.18, which assumed a linearly realizable optimal policy, is due to [Du et al., 2019].
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Part 2

Strategic Exploration
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Chapter 6

Multi-Armed & Linear Bandits

For the case, where γ = 0 (or H = 1 in the undiscounted case), the problem of learning in an unknown MDP reduce
to the multi-armed bandit problem. The basic algorithms and proof methodologies here are important to understand
in their own right, due to that we will have to extend these with more sophisticated variants to handle the exploration-
exploitation tradeoff in the more challenging reinforcement learning problem.

This chapter follows analysis of the LinUCB algorithm from the original proof in [Dani et al., 2008], with a simplified
concentration analysis due to [Abbasi-Yadkori et al., 2011].

Throughout this chapter, we assume reward is stochastic.

6.1 The K-Armed Bandit Problem

The setting is where we have K decisions (the “arms”), where when we play arm a ∈ {1, 2, . . .K} we obtain a
random reward ra ∈ [−1, 1] from R(a) ∈ ∆([−1, 1]) which has mean reward:

Era∼R(a)[ra] = µa

where it is easy to see that µa ∈ [−1, 1].

Every iteration t, the learner will pick an arm It ∈ [1, 2, . . .K]. Our cumulative regret is defined as:

RT = T ·max
i
µi −

T−1∑
t=0

µIt

We denote a? = argmaxi µi as the optimal arm. We define gap ∆a = µa? − µa for any arm a.

Theorem 6.1. There exists an algorithm such that with probability at least 1− δ, we have:

RT = O

min

√KT · ln(TK/δ),
∑
a 6=a?

ln(TK/δ)

∆a

+K

 .

6.1.1 The Upper Confidence Bound (UCB) Algorithm

We summarize the upper confidence bound (UCB) algorithm in Alg. 3. For simplicity, we allocate the first K rounds
to pull each arm once.
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Algorithm 3 UCB
1: Play each arm once and denote received reward as ra for all a ∈ {1, 2, . . .K}
2: for t = 1→ T −K do
3: Execute arm It = arg maxi∈[K]

(
µ̂ti +

√
log(TK/δ)

Nti

)
4: Observe rt := rIt
5: end for

where every iteration t, we maintain counts of each arm:

N t
a = 1 +

t−1∑
i=1

1{Ii = a},

where It is the index of the arm that is picked by the algorithm at iteration t. We main the empirical mean for each
arm as follows:

µ̂ta =
1

N t
a

(
ra +

t−1∑
i=1

1{Ii = a}ri
)
.

Recall that ra is the reward of arm a we got during the first K rounds.

We also main the upper confidence bound for each arm as follows:

µ̂ta + 2

√
ln(TK/δ)

N t
a

.

The following lemma shows that this is a valid upper confidence bound with high probability.

Lemma 6.2 (Upper Confidence Bound). For all t ∈ [1, . . . , T ] and a ∈ [1, 2, . . .K], we have that with probability at
least 1− δ,

∣∣µ̂ta − µa∣∣ ≤ 2

√
ln(TK/δ)

N t
a

. (0.1)

The proof of the above lemma uses Azuma-Hoeffding’s inequality (Theorem A.5) for each arm a and iteration t and
then apply a union bound over all T iterations andK arms. The reason one needs to use Azuma-Hoeffding’s inequality
is that here the number of trials of arm a, i.e. N t

a, itself is a random variable while the classic Hoeffding’s inequality
only applies to the setting where the number of trials is a fixed number.

Proof: We first consider a fixed arm a. Let us define the following random variables, X0 = ra − µa, X1 = 1{I1 =
a}(r1 − µa), X2 = 1{I2 = a}(r2 − µa), . . . , Xi = 1{Ii = a}(ri − µa), . . . .

Regarding the boundedness on these random variables, we have that for i where 1{Ii = a} = 1, we have |Xi| ≤ 1,
and for i where 1{Ii = a} = 0, we have |Xi| = 0. Now, consider E [Xi|H<i], where H<i is all history up to but not
including iteration i. Note that we have E [Xi|H<i] = 0 since condition on historyH<i, 1{Ii = a} is a deterministic
quantity (i.e., UCB algorithm determines whether or not to pull arm a at iteration i only based on the information from
H<i). Thus, we can conclude that {Xi}i=0 is a Martingale difference sequence. Via Azuma-Hoeffding’s inequality,
we have that with probability at least 1− δ, for any fixed t, we have:∣∣∣∣∣

t−1∑
i=0

Xi

∣∣∣∣∣ =
∣∣N t

aµ̂
t
a −N t

aµa
∣∣ ≤ 2

√
ln(1/δ)N t

a,
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where we use the fact that
∑t−1
i=0 |Xi|2 ≤ N t

a. Divide N t
a on both side, we have:∣∣µ̂ta − µa∣∣ ≤ 2
√

ln(1/δ)/N t
a

Apply union bound over all 0 ≤ t ≤ T and a ∈ {1, . . . ,K}, we have that with probability 1− δ, for all t, a:∣∣µ̂ta − µa∣∣ ≤ 2
√

ln(1/δ)/N t
a ≤ 2

√
ln(TK/δ)/N t

a

This concludes the proof.

Now we can conclude the proof of the main theorem.

Proof: Below we conditioned on the above inequality 0.1 holds. This gives us the following optimism:

µa ≤ µ̂ta + 2

√
ln(TK/δ)

N t
a

,∀a, t.

Thus, we can upper bound the regret as follows:

µa? − µIt ≤ µ̂tIt + 2

√
ln(TK/δ)

N t
It

− µIt ≤ 4

√
ln(TK/δ)

N t
It

.

Sum over all iterations, we get:

T−1∑
t=0

µa? − µIt ≤ 4
√

ln(TK/δ)

T−1∑
t=0

√
1

N t
It

= 4
√

ln(TK/δ)
∑
a

NTa∑
i=1

1√
i
≤ 8
√

ln(TK/δ)
∑
a

√
NT
a ≤ 8

√
ln(TK/δ)

√
K
∑
a

NT
a

≤ 8
√

ln(TK/δ)
√
KT.

Note that our algorithm has regret K at the first K rounds.

On the other hand, if for each arm a, the gap ∆a > 0, then, we must have:

NT
a ≤

4 ln(TK/δ)

∆2
a

.

which is because after the UCB of an arm a is below µa? , UCB algorithm will never pull this arm a again (the UCB
of a? is no smaller than µa? ).

Thus for the regret calculation, we get:

T−1∑
t=0

µa? − µIt ≤
∑
a6=a?

NT
a ∆a ≤

∑
a 6=a?

4 ln(TK/δ)

∆a
.

Together with the fact that Inequality 0.1 holds with probability at least 1− δ, we conclude the proof.

6.2 Linear Bandits: Handling Large Action Spaces

Let D ⊂ Rd be a compact (but otherwise arbitrary) set of decisions. On each round, we must choose a decision
xt ∈ D. Each such choice results in a reward rt ∈ [−1, 1].
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Algorithm 4 The Linear UCB algorithm
Input: λ, βt

1: for t = 0, 1 . . . do
2: Execute

xt = argmaxx∈D max
µ∈BALLt

µ · x

and observe the reward rt.
3: Update BALLt+1 (as specified in Equation 0.2).
4: end for

We assume that, regardless of the history H of decisions and observed rewards, the conditional expectation of rt is a
fixed linear function, i.e. for all x ∈ D,

E[rt|xt = x] = µ? · x ∈ [−1, 1],

where x ∈ D is arbitrary. Here, observe that we have assumed the mean reward for any decision is bounded in [−1, 1].
Under these assumptions, the noise sequence,

ηt = rt − µ? · xt
is a martingale difference sequence.

The is problem is essentially a bandit version of a fundamental geometric optimization problem, in which the agent’s
feedback on each round t is only the observed reward rt and where the agent does not know µ? apriori.

If x0, . . . xT−1 are the decisions made in the game, then define the cumulative regret by

RT = Tµ? · x? −
T−1∑
t=0

µ? · xt

where x? ∈ D is an optimal decision for µ?, i.e.

x? ∈ argmaxx∈D µ
? · x

which exists since D is compact. Observe that if the mean µ? were known, then the optimal strategy would be to play
x? every round. Since the expected loss for each decision x equals µ? · x, the cumulative regret is just the difference
between the expected loss of the optimal algorithm and the expected loss for the actual decisions xt. By the Hoeffding-
Azuma inequality (see Lemma A.5), the observed reward

∑T−1
t=0 rt will be close to their (conditional) expectations∑T−1

t=0 µ? · xt.
Since the sequence of decisions x1, . . . , xT−1 may depend on the particular sequence of random noise encountered,
RT is a random variable. Our goal in designing an algorithm is to keep RT as small as possible.

6.2.1 The LinUCB algorithm

LinUCB is based on “optimism in the face of uncertainty,” which is described in Algorithm 4. At episode t, we use all
previous experience to define an uncertainty region (an ellipse) BALLt. The center of this region, µ̂t, is the solution of
the following regularized least squares problem:

µ̂t = arg min
µ

t−1∑
τ=0

‖µ · xτ − rτ‖22 + λ‖µ‖22

= Σ−1
t

t−1∑
τ=0

rτxτ ,
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where λ is a parameter and where

Σt = λI +

t−1∑
τ=0

xτx
>
τ , with Σ0 = λI.

The shape of the region BALLt is defined through the feature covariance Σt.

Precisely, the uncertainty region, or confidence ball, is defined as:

BALLt =
{
µ|(µ̂t − µ)>Σt(µ̂t − µ) ≤ βt

}
, (0.2)

where βt is a parameter of the algorithm.

Computation. Suppose that we have an efficient linear optimization oracle, i.e. that we can efficiently solve the
problem:

max
x∈D

ν · x

for any ν. Even with this, Step 2 of LinUCB may not be computationally tractable. For example, suppose that D
is provided to us as a polytope, then the above oracle can be efficiently computed using linear programming, while
LinUCB is an NP-hard optimization. Here, we can actually use a wider confidence region, where we can keep track
of `1 ball which contains BALLt. See Section 6.4 for further reading.

6.2.2 Upper and Lower Bounds

Our main result here is that we have sublinear regret with only a polynomial dependence on the dimension d and,
importantly, no dependence on the cardinality of the decision space D, i.e. on |D|.

Theorem 6.3. Suppose that the expected costs are bounded, in magnitude, by 1, i.e. that |µ? · x| ≤ 1 for all x ∈ D;
that ‖µ?‖ ≤W and ‖x‖ ≤ B for all x ∈ D; and that the noise ηt is σ2 sub-Gaussian 1. Set

λ = σ2/W 2, βt := σ2
(

2 + 4d log

(
1 +

tB2W 2

d

)
+ 8 log(4/δ)

)
.

We have that with probability greater than 1− δ, that (simultaneously) for all T ≥ 0,

RT ≤ cσ
√
T

(
d log

(
1 +

TB2W 2

dσ2

)
+ log(4/δ)

)
where c is an absolute constant. In other words, we have that RT is Õ(d

√
T ) with high probability.

The following shows that no algorithm can (uniformly) do better.

Theorem 6.4. (Lower bound) There exists a distribution over linear bandit problems (i.e. a distribution over µ) with
the rewards being bounded by 1, in magnitude, and σ2 ≤ 1, such that for every (randomized) algorithm, we have for
n ≥ max{256, d2/16},

Eµ ERT ≥
1

2500
d
√
T .

where the inner expectation is with respect to randomness in the problem and the algorithm.

We will only prove the upper bound (See Section bib:bandits).

1Roughly, this assumes the tail probabilities of ηt decay no more slowly than a Gaussian distribution. See Definition A.2.
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LinUCB and D-optimal design. Let us utilize the D-optimal design to improve the dependencies in Theorem 6.3.
Let ΣD denote the D-optimal design matrix from Theorem 3.2. Consider the coordinate transformation:

x̃ = Σ
−1/2
D x, µ̃? = Σ

1/2
D µ?.

Observe that µ̃? · x̃ = µ? · x, so we still have a linear expected reward function in this new coordinate systems. Also,
observe that ‖x̃‖ = ‖x‖ΣD ≤ d, which is a property of the D-optimal design, and that

‖µ̃?‖ = ‖µ?‖ΣD =
√

(µ?)>ΣDµ? =
√
Ex∼ρ[(µ? · x)2] ≤ 1,

where the last step uses our assumption that the rewards are bounded, in magnitude, by 1.

The following corollary shows that, without loss of generality, we we can remove the dependencies on B and W from
the previous theorem, due to that B ≤

√
d and W ≤ 1 when working under this coordinate transform.

Corollary 6.5. Suppose that the expected costs are bounded, in magnitude, by 1, i.e. that |µ̃? · x̃| ≤ 1 for all x ∈ D
and that the noise ηt is σ2 sub-Gaussian. Suppose linUCB is implemented in the x̃ coordinate system, as described
above, with the following settings of the parameters.

λ = σ2, βt := σ2
(

2 + 4d log (1 + t) + 8 log(4/δ)
)
.

We have that with probability greater than 1− δ, that (simultaneously) for all T ≥ 0,

RT ≤ cσ
√
T

(
d log

(
1 +

T

σ2

)
+ log(4/δ)

)
where c is an absolute constant.

6.3 LinUCB Analysis

In establishing the upper bounds there are two main propositions from which the upper bounds follow. The first is in
showing that the confidence region is appropriate.

Proposition 6.6. (Confidence) Let δ > 0. We have that

Pr(∀t, µ? ∈ BALLt) ≥ 1− δ.

Section 6.3.2 is devoted to establishing this confidence bound. In essence, the proof seeks to understand the growth of
the quantity (µ̂t − µ?)>Σt(µ̂t − µ?).

The second main step in analyzing LinUCB is to show that as long as the aforementioned high-probability event holds,
we have some control on the growth of the regret. Let us define

regrett = µ? · x∗ − µ? · xt
which denotes the instantaneous regret.

The following bounds the sum of the squares of instantaneous regret.

Proposition 6.7. (Sum of Squares Regret Bound) Suppose that ‖x‖ ≤ B for x ∈ D. Suppose βt is increasing and
that βt ≥ 1. For LinUCB, if µ? ∈ BALLt for all t, then

T−1∑
t=0

regret2
t ≤ 8βT d log

(
1 +

TB2

dλ

)
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This is proven in Section 6.3.1. The idea of the proof involves a potential function argument on the log volume (i.e. the
log determinant) of the “precision matrix” Σt (which tracks how accurate our estimates of µ? are in each direction).
The proof involves relating the growth of this volume to the regret.

Using these two results we are able to prove our upper bound as follows:

Proof:[Proof of Theorem 6.3] By Propositions 6.6 and 6.7 along with the Cauchy-Schwarz inequality, we have, with
probability at least 1− δ,

RT =

T−1∑
t=0

regrett ≤

√√√√T

T−1∑
t=0

regret2
t ≤

√
8TβT d log

(
1 +

TB2

dλ

)
.

The remainder of the proof follows from using our chosen value of βT and algebraic manipulations (that 2ab ≤
a2 + b2).

We now provide the proofs of these two propositions.

6.3.1 Regret Analysis

In this section, we prove Proposition 6.7, which says that the sum of the squares of the instantaneous regrets of the
algorithm is small, assuming the evolving confidence balls always contain the true mean µ?. An important observation
is that on any round t in which µ? ∈ BALLt, the instantaneous regret is at most the “width” of the ellipsoid in the
direction of the chosen decision. Moreover, the algorithm’s choice of decisions forces the ellipsoids to shrink at a rate
that ensures that the sum of the squares of the widths is small. We now formalize this.

Unless explicitly stated, all norms refer to the `2 norm.

Lemma 6.8. Let x ∈ D. If µ ∈ BALLt and x ∈ D. Then

|(µ− µ̂t)>x| ≤
√
βtx>Σ−1

t x

Proof: By Cauchy-Schwarz, we have:

|(µ− µ̂t)>x| = |(µ− µ̂t)>Σ
1/2
t Σ

−1/2
t x| = |(Σ1/2

t (µ− µ̂t))>Σ
−1/2
t x|

≤ ‖Σ1/2
t (µ− µ̂t)‖‖Σ−1/2

t x‖ = ‖Σ1/2
t (µ− µ̂t)‖

√
x>Σ−1

t x ≤
√
βtx>Σ−1

t x

where the last inequality holds since µ ∈ BALLt.

Define
wt :=

√
x>t Σ−1

t xt

which we interpret as the “normalized width” at time t in the direction of the chosen decision. We now see that the
width, 2

√
βtwt, is an upper bound for the instantaneous regret.

Lemma 6.9. Fix t ≤ T . If µ? ∈ BALLt and βt ≥ 1, then

regrett ≤ 2 min (
√
βtwt, 1) ≤ 2

√
βT min (wt, 1)

Proof: Let µ̃ ∈ BALLt denote the vector which minimizes the dot product µ̃>xt. By the choice of xt, we have

µ̃>xt = max
µ∈BALLt

µ>xt = max
x∈D

max
µ∈BALLt

µ>x ≥ (µ?)>x∗,
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where the inequality used the hypothesis µ? ∈ BALLt. Hence,

regrett = (µ?)>x∗ − (µ?)>xt ≤ (µ̃− µ?)>xt
= (µ̃− µ̂t)>xt + (µ̂t − µ?)>xt ≤ 2

√
βtwt

where the last step follows from Lemma 6.8 since µ̃ and µ? are in BALLt. Since rt ∈ [−1, 1], regrett is always at
most 2 and the first inequality follows. The final inequality is due to that βt is increasing and larger than 1.

The following two lemmas prove useful in showing that we can treat the log determinant as a potential function, where
can bound the sum of widths independently of the choices made by the algorithm.

Lemma 6.10. We have:

det ΣT = det Σ0

T−1∏
t=0

(1 + w2
t ).

Proof: By the definition of Σt+1, we have

det Σt+1 = det(Σt + xtx
>
t ) = det(Σ

1/2
t (I + Σ

−1/2
t xtx

>
t Σ
−1/2
t )Σ

1/2
t )

= det(Σt) det(I + Σ
−1/2
t xt(Σ

−1/2
t xt)

>) = det(Σt) det(I + vtv
>
t ),

where vt := Σ
−1/2
t xt. Now observe that v>t vt = w2

t and

(I + vtv
>
t )vt = vt + vt(v

>
t vt) = (1 + w2

t )vt

Hence (1 +w2
t ) is an eigenvalue of I + vtv

>
t . Since vtv>t is a rank one matrix, all other eigenvalues of I + vtv

>
t equal

1. Hence, det(I + vtv
>
t ) is (1 + w2

t ), implying det Σt+1 = (1 + w2
t ) det Σt. The result follows by induction.

Lemma 6.11. (“Potential Function” Bound) For any sequence x0, . . . xT−1 such that, for t < T , ‖xt‖2 ≤ B, we
have:

log
(

det ΣT−1/det Σ0

)
= log det

(
I +

1

λ

T−1∑
t=0

xtx
>
t

)
≤ d log

(
1 +

TB2

dλ

)
.

Proof: Denote the eigenvalues of
∑T−1
t=0 xtx

>
t as σ1, . . . σd, and note:

d∑
i=1

σi = Trace

(
T−1∑
t=0

xtx
>
t

)
=

T−1∑
t=0

‖xt‖2 ≤ TB2.

Using the AM-GM inequality,

log det

(
I +

1

λ

T−1∑
t=0

xtx
>
t

)
= log

(
d∏
i=1

(1 + σi/λ)

)

= d log

(
d∏
i=1

(1 + σi/λ)

)1/d

≤ d log

(
1

d

d∑
i=1

(1 + σi/λ)

)
≤ d log

(
1 +

TB2

dλ

)
,

which concludes the proof.

Finally, we are ready to prove that if µ? always stays within the evolving confidence region, then our regret is under
control.
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Proof:[Proof of Proposition 6.7] Assume that µ? ∈ BALLt for all t. We have that:

T−1∑
t=0

regret2
t ≤

T−1∑
t=0

4βt min(w2
t , 1) ≤ 4βT

T−1∑
t=0

min(w2
t , 1)

≤ 8βT

T−1∑
t=0

ln(1 + w2
t ) ≤ 8βT log

(
det ΣT−1/ det Σ0

)
= 8βT d log

(
1 +

TB2

dλ

)
where the first inequality follow from By Lemma 6.9; the second from that βt is an increasing function of t; the third
uses that for 0 ≤ y ≤ 1, ln(1 + y) ≥ y/2; the final two inequalities follow by Lemmas 6.10 and 6.11.

6.3.2 Confidence Analysis

Proof:[Proof of Proposition 6.6] Since rτ = xτ · µ? + ητ , we have:

µ̂t − µ? = Σ−1
t

t−1∑
τ=0

rτxτ − µ? = Σ−1
t

t−1∑
τ=0

xτ (xτ · µ? + ητ )− µ?

= Σ−1
t

(
t−1∑
τ=0

xτ (xτ )>

)
µ? − µ? + Σ−1

t

t−1∑
τ=0

ητxτ = λΣ−1
t µ? + Σ−1

t

t−1∑
τ=0

ητxτ

For any 0 < δt < 1, using Lemma A.9, it holds with probability at least 1− δt,√
(µ̂t − µ?)>Σt(µ̂t − µ?) = ‖(Σt)1/2(µ̂t − µ?)‖

≤
∥∥∥λΣ

−1/2
t µ?

∥∥∥+

∥∥∥∥∥Σ
−1/2
t

t−1∑
τ=0

ητxτ

∥∥∥∥∥
≤
√
λ‖µ?‖+

√
2σ2 log (det(Σt) det(Σ0)−1/δt).

where we have also used the triangle inequality and that ‖Σ−1
t ‖ ≤ 1/λ.

We seek to lower bound Pr(∀t, µ? ∈ BALLt). Note that at t = 0, by our choice of λ, we have that BALL0 contains
W ?, so Pr(µ? /∈ BALL0) = 0. For t ≥ 1, let us assign failure probability δt = (3/π2)/t2δ for the t-th event, which,
using the above, gives us an upper bound on the sum failure probability as

1− Pr(∀t, µ? ∈ BALLt) = Pr(∃t, µ? /∈ BALLt) ≤
∞∑
t=1

Pr(µ? /∈ BALLt) <

∞∑
t=1

(1/t2)(3/π2)δ = δ/2.

This along with Lemma 6.11 completes the proof.

6.4 Bibliographic Remarks and Further Readings

The orignal multi-armed bandit model goes to back to [Robbins, 1952]. The linear bandit model was first introduced
in [Abe and Long, 1999]. Our analysis of the LinUCB algorithm follows from the original proof in [Dani et al., 2008],
with a simplified concentration analysis due to [Abbasi-Yadkori et al., 2011]. The first sublinear regret bound here
was due to [Auer et al., 2002], which used a more complicated algorithm.

The lower bound we present is also due to [Dani et al., 2008], which also shows that LinUCB is minimax optimal.
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Chapter 7

Strategic Exploration in Tabular MDPs

We now turn to how an agent acting in an unknown MDP can obtain a near-optimal reward over time. Compared with
the previous setting with access to a generative model, we no longer have easy access to transitions at each state, but
only have the ability to execute trajectories in the MDP. The main complexity this adds to the learning process is that
the agent has to engage in exploration, that is, plan to reach new states where enough samples have not been seen yet,
so that optimal behavior in those states can be learned.

We will work with finite-horizon MDPs with a fixed start state s0 (see Section 1.2), and we will assume the agent learns
in an episodic setting, as introduced in Chapter 2. Here, in in every episode k, the learner acts for H step starting from
a fixed starting state s0 and, at the end of the H-length episode, the state is reset to s0. It is straightforward to extend
this setting where the starting state is sampled from a distribution, i.e. s0 ∼ µ.

The goal of the agent is to minimize her expected cumulative regret over K episodes:

Regret := E

[
KV ?(s0)−

K−1∑
k=0

H−1∑
h=0

r(skh, a
k
h)

]
,

where the expectation is with respect to the randomness of the MDP environment and, possibly, any randomness of
the agent’s strategy.

This chapter considers tabular MDPs, where S and A are discrete. We will now present a (nearly) sublinear regret
algorithm, UCB-Value Iteration. This chapter follows the proof in [Azar et al., 2017]. We first give a simplified
analysis of UCB-VI that gives a regret bound in the order of H2S

√
AK, followed by a more refined analysis that

gives a H2
√
SAK +H3S2A regret bound.

7.1 On The Need for Strategic Exploration

Consider the chain MDP of length H + 2 shown in Figure 0.1. The starting state of interest is state s0. We consider
a uniformly random policy πh(s) that at any time step h and any state s, selects an action from all A many actions
uniform randomly. It is easy to see that starting from s0, the probability of such uniform random policy hitting the
rewarding state sH+1 is exponentially small, i.e., O

(
AH
)
, since it needs to select the right action that moves one step

right at every time step h. This example demonstrates that we need to perform strategic exploration in order to avoid
the exponential sample complexity.
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s0 s1 · · · sH sH+1

a1

a1 a1

a1

a2 a2

a3

a4

a3

a4

Figure 0.1: A deterministic, chain MDP of length H + 2. Rewards are 0 everywhere other than r(sH+1, a1) = 1. In
this example we have A = 4.

Algorithm 5 UCBVI
Input: reward function r (assumed to be known), confidence parameters

1: for k = 0 . . .K − 1 do
2: Compute P̂ kh as the empirical estimates, for all h (Eq. 0.1)
3: Compute reward bonus bkh for all h (Eq. 0.2)
4: Run Value-Iteration on {P̂ kh , r + bkh}H−1

h=0 (Eq. 0.3)
5: Set πk as the returned policy of VI.
6: end for

7.2 The UCB-VI algorithm

If the learner then executes πk in the underlying MDP to generate a single trajectory τk = {skh, akh}H−1
h=0 with ah =

πkh(skh) and skh+1 ∼ Ph(·|skh, akh). We first define some notations below. Consider the very beginning of episode k.
We use the history information up to the end of episode k − 1 (denoted as H<k) to form some statistics. Specifically,
we define:

Nk
h (s, a, s′) =

k−1∑
i=0

1{(sih, aih, sih+1) = (s, a, s′)},

Nk
h (s, a) =

k−1∑
i=0

1{(sih, aih) = (s, a)},∀h, s, a.

Namely, we maintain counts of how many times s, a, s′ and s, a are visited at time step h from the beginning of the
learning process to the end of the episode k − 1. We use these statistics to form an empirical model:

P̂ kh (s′|s, a) =
Nk
h (s, a, s′)

Nk
h (s, a)

,∀h, s, a, s′. (0.1)

We will also use the counts to define a reward bonus, denoted as bh(s, a) for all h, s, a. Denote L := ln (SAHK/δ)
(δ as usual represents the failure probability which we will define later). We define reward bonus as follows:

bkh(s, a) = 2H

√
L

Nk
h (s, a)

. (0.2)

With reward bonus and the empirical model, the learner uses Value Iteration on the empirical transition P̂ kh and the
combined reward rh + bkh. Starting at H (note that H is a fictitious extra step as an episode terminates at H − 1), we
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perform dynamic programming all the way to h = 0:

V̂ kH(s) = 0,∀s,
Q̂kh(s, a) = min

{
rh(s, a) + bkh(s, a) + P̂ kh (·|s, a) · V̂ kh+1, H

}
,

V̂ kh (s) = max
a

Q̂kh(s, a), πkh(s) = argmaxa Q̂
k
h(s, a),∀h, s, a. (0.3)

Note that when using V̂ kh+1 to compute Q̂kh, we truncate the value by H . This is because we know that due to the
assumption that r(s, a) ∈ [0, 1], no policy’s Q value will ever be larger than H .

Denote πk = {πk0 , . . . , πkH−1}. Learner then executes πk in the MDP to get a new trajectory τk.

UCBVI repeats the above procedure for K episodes.

7.3 Analysis

We will prove the following theorem.

Theorem 7.1 (Regret Bound of UCBVI). UCBVI achieves the following regret bound:

Regret := E

[
K−1∑
k=0

(
V ?(s0)− V πk(s0)

)]
≤ 10H2S

√
AK · ln(SAH2K2) = Õ

(
H2S

√
AK

)

Remark While the above regret is sub-optimal, the algorithm we presented here indeed achieves a sharper bound
in the leading term Õ(H2

√
SAK) [Azar et al., 2017], which gives the tight dependency bound on S,A,K. In

Section 7.4, we will present a refined analysis that indeed achieves H2
√
SAK regret. The dependency on H is

not tight and tightening the dependency on H requires modifications to the reward bonus (use Bernstein inequality
rather than Hoeffding’s inequality for reward bonus design).

We prove the above theorem in this section.

We start with bounding the error from the learned model P̂ kh .

Lemma 7.2 (State-action wise model error). Fix δ ∈ (0, 1). For all k ∈ [0, . . . ,K − 1], s ∈ S, a ∈ A, h ∈
[0, . . . ,H − 1], with probability at least 1− δ, we have that for any f : S 7→ [0, H]:∣∣∣∣(P̂ kh (·|s, a)− P ?h (·|s, a)

)>
f

∣∣∣∣ ≤ 8H

√
S ln(SAHK/δ)

Nk
h (s, a)

.

Remark The proof of the above lemma requires a careful argument using Martingale difference sequence mainly
because Nk

h (s, a) itself is a random quantity. We give a proof the above lemma at the end of this section (Sec. 7.3.1).
Using the above lemma will result a sub-optimal regret bound in terms of the dependence on S. In Section 7.4, we

will give a different approach to bound
∣∣∣∣(P̂ kh (·|s, a)− P ?h (·|s, a)

)>
f

∣∣∣∣ which leads to an improved regret bound.

The following lemma is still about model error, but this time we consider an average model error with respect to V ?

— a deterministic quantity.
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Lemma 7.3 (State-action wise average model error under V ?). Fix δ ∈ (0, 1). For all k ∈ [1, . . . ,K − 1], s ∈ S, a ∈
A, h ∈ [0, . . . ,H − 1], and consider V ?h : S → [0, H], with probability at least 1− δ, we have:

∣∣∣P̂ kh (·|s, a) · V ?h+1 − P ?h (·|s, a) · V ?h+1

∣∣∣ ≤ 2H

√
ln(SAHN/δ)

Nk
h (s, a)

.

Note that we can use Lemma 7.2 to bound
∣∣∣P̂ kh (·|s, a) · V ?h+1 − P ?h (·|s, a) · V ?h+1

∣∣∣. However, the above lemma shows
that by leveraging the fact that V ? is a deterministic quantity (i.e., independent of the data collected during learning),
we can get a tighter upper bound which does not scale polynomially with respect to S.

Proof: Consider a fixed tuple s, a, k, h first. By the definition of P̂ kh , we have:

P̂ kh (·|s, a) · V ?h+1 =
1

Nk
h (s, a)

k−1∑
i=0

1{(sih, aih) = (s, a)}V ?h+1(sih+1).

Now denote Hh,i as the entire history from t = 0 to iteration t = i where in iteration i, Hh,i includes history from
time step 0 up to and including time step h. We define random variables: Xi = 1{(sih, aih) = (s, a)}V ?h+1(sih+1) −
E
[
1{(sih, aih) = (s, a)}V ?h+1(s′h+1)|Hh,i

]
for i = 0, . . . ,K − 1. These random variables have the following proper-

ties. First |Xi| ≤ H if 1{(sih, aih) = (s, a)} = 1, else |Xi| = 0, which implies that
∑k
i=0 |Xi|2 ≤ Nk

h (s, a). Also
we have E [Xi|Hh,i] = 0 for all i. Thus, {Xi}i≥0 is a Martingale difference sequence. Using Azuma-Hoeffding’s
inequality, we get that for any fixed k, with probability at least 1− δ,∣∣∣∣∣

k−1∑
i=0

Xi

∣∣∣∣∣ =

∣∣∣∣∣
k−1∑
i=0

1{(sih, aih) = (s, a)}V ?h+1(sih+1)−Nk
h (s, a)Es′∼P?h (s,a)V

?(s′)

∣∣∣∣∣ ≤ 2H
√
Nk
h (s, a) ln(1/δ).

Divide Nk
h (s, a) on both sides and use the definition of P̂h(·|s, a)>V ?h+1, we get:∣∣∣P̂h(·|s, a)>V ?h+1 − P ?h (·|s, a)>V ?h+1

∣∣∣ ≤ 2H
√

ln(1/δ)/Nk
h (s, a).

With a union bound over all s ∈ S, a ∈ A, k ∈ [N ], h ∈ [H], we conclude the proof.

We denote the two inequalities in Lemma 7.2 and Lemma 7.3 as event Emodel. Note that the failure probability of
Emodel is at most 2δ. Below we condition on Emodel being true (we deal with failure event at the very end).

Now we study the effect of reward bonus. Similar to the idea in multi-armed bandits, we want to pick a policy πk,
such that the value of πk in under the combined reward rh+bkh and the empirical model P̂ kh is optimistic, i.e., we want
V̂ k0 (s0) ≥ V ?0 (s0) for all s0. The following lemma shows that via reward bonus, we are able to achieve this optimism.

Lemma 7.4 (Optimism). Assume Emodel is true. For all episode k, we have:

V̂ k0 (s0) ≥ V ?0 (s0),∀s0 ∈ S;

where V̂ kh is computed based on VI in Eq. 0.3.

Proof: We prove via induction. At the additional time step H we have V̂ kH(s) = V ?H(s) = 0 for all s.

Starting at h+ 1, and assuming we have V̂ kh+1(s) ≥ V ?h+1(s) for all s, we move to h below.
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Consider any s, a ∈ S ×A. First, if Qkh(s, a) = H , then we have Qkh(s, a) ≥ Q?h(s, a).

Q̂kh(s, a)−Q?h(s, a) = bkh(s, a) + P̂ kh (·|s, a) · V̂ kh+1 − P ?h (·|s, a) · V ?h+1

≥ bkh(s, a) + P̂ kh (·|s, a) · V ?h+1 − P ?h (·|s, a) · V ?h+1

= bkh(s, a) +
(
P̂ kh (·|s, a)− P ?h (·|s, a)

)
· V ?h+1

≥ bkh(s, a)− 2H

√
ln(SAHK/δ)

Nk
h (s, a)

≥ 0.

where the first inequality is from the inductive hypothesis, and the last inequality uses Lemma 7.3 and the definition
of bonus.

From Q̂kh, one can finish the proof by showing V̂ kh (s) ≥ V ?h (s),∀s.
Before we prove our final result, one more technical lemma will be helpful:

Lemma 7.5. Consider arbitrary K sequence of trajectories τk = {skh, akh}H−1
h=0 for k = 0, . . . ,K − 1. We have

K−1∑
k=0

H−1∑
h=0

1√
Nk
h (skh, a

k
h)
≤ 2H

√
SAK.

Proof: We swap the order of the two summation above:

K−1∑
k=0

H−1∑
h=0

1√
Nk
h (skh, a

k
h)

=

H−1∑
h=0

K−1∑
k=0

1√
Nk
h (skh, a

k
h)

=

H−1∑
h=0

∑
s,a∈S×A

NKh (s,a)∑
i=1

1√
i

≤ 2

H−1∑
h=0

∑
s,a∈S×A

√
NK
h (s, a) ≤

H−1∑
h=0

√
SA

∑
s,a

NK
h (s, a) = H

√
SAK,

where in the first inequality we use the fact that
∑N
i=1 1/

√
i ≤ 2

√
N , and in the second inequality we use CS

inequality.

The proof of our main theorem now follows:

Proof:[Proof of Theorem 7.1]

Let us consider episode k and denote H<k as the history up to the end of episode k − 1. We consider bounding
V ? − V πk . Using optimism and the simulation lemma, we can get the following result:

V ?(s0)− V πk(s0) ≤ V̂ k0 (s0)− V πk0 (s0) ≤
H−1∑
h=0

E
sh,ah∼dπ

k

h

[
bkh(sh, ah) +

(
P̂ kh (·|sh, ah)− P ?(·|sh, ah)

)
· V̂ πkh+1

]
(0.4)

We prove the above two inequalities in the lecture. We leave the proof of the above inequality (Eq 0.4) as an exercise
for readers. Note that this is slightly different from the usual simulation lemma, as here we truncate V̂ by H during
VI.

Under Emodel, we can bound
(
P̂ kh (·|sh, ah)− P ?(·|sh, ah)

)
· V̂ πkh+1 (recall Lemma 7.2) with a Holder’s inequality:∣∣∣(P̂ kh (·|sh, ah)− P ?(·|sh, ah)

)
· V̂ πkh+1

∣∣∣ ≤ ∥∥∥P̂ kh (·|sh, ah)− P ?(·|sh, ah)
∥∥∥

1

∥∥∥V̂ πkh+1

∥∥∥
∞

≤ 8H

√
SL

Nk
h (s, a)

,
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where recall L := ln(SAKH/δ). Hence, for the per-episode regret V ?(s0)− V πk(s0), we obtain:

V ?(s0)− V πk(s0) ≤
H−1∑
h=0

E
sh,ah∼dπ

k

h

[
bkh(sh, ah) + 8H

√
SL/Nk

h (sh, ah)

]

≤
H−1∑
h=0

E
sh,ah∼dπ

k

h

[
10H

√
SL/Nk

h (sh, ah)

]

= 10H
√
SL · E

H−1∑
h=0

1√
Nk
h (skh, a

k
h)

∣∣H<k
 ,

where in the last term the expectation is taken with respect to the trajectory {skh, akh} (which is generated from πk)
while conditioning on all historyH<k up to and including the end of episode k − 1.

Now we sum all episodes together and take the failure event into consideration:

E

[
K−1∑
k=0

V ?(s0)− V πk(s0)

]
= E

[
1{Emodel}

(
K−1∑
k=0

V ?(s0)− V πk(s0)

)]
+ E

[
1{Emodel}

(
K−1∑
k=0

V ?(s0)− V πk(s0)

)]

≤ E

[
1{Emodel}

(
K−1∑
k=0

V ?(s0)− V πk(s0)

)]
+ 2δKH (0.5)

≤ 10H
√
S ln(SAHK/δ)E

K−1∑
k=0

H−1∑
h=0

1√
Nk
h (skh, a

k
h)

+ 2δKH,

where the last inequality uses the law of total expectation.

We can bound the double summation term above using lemma 7.5. We can conclude that:

E

[
K−1∑
k=0

V ?(s0)− V πk(s0)

]
≤ 10H2S

√
AK ln(SAHK/δ) + 2δKH.

Now set δ = 1/KH , we get:

E

[
K−1∑
k=0

V ?(s0)− V πk(s0)

]
≤ 10H2S

√
AK ln(SAH2K2) + 2 = O

(
H2S

√
AK ln(SAH2K2)

)
.

This concludes the proof of Theorem 7.1.

7.3.1 Proof of Lemma 7.2

Here we include a proof of Lemma 7.2. The proof consists of two steps, first we using Martingale concentration to
bound |(P̂ kh (·|s, a) − P ?h (·|s, a))>f | for all s, a, h, k, but for a fixed f : S 7→ [0, H]. Note that there are infinitely
many such f that maps from S to [0, H]. Thus, the second step is to use a covering argument (i.e., ε-net on all
{f : S 7→ [0, H]}) to show that |(P̂ kh (·|s, a)− P ?h (·|s, a))>f | is bounded for all s, a, h, k, and all f : S 7→ [0, H].

Proof:[Proof of Lemma 7.2] We consider a fixed tuple s, a, k, h, f first. Recall the definition of P̂ kh (s, a), and we
have: P̂ kh (·|s, a)>f =

∑k−1
i=0 1{sih, aih = s, a}f(sih+1)/Nk

h (s, a).
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DefineHh,i as the history starting from the beginning of iteration 0 all the way up to and include time step h at iteration
i. Define random variables Xi as Xi = 1{sih, aih = s, a}f(sih+1)− 1{sih, aih = s, a}Es′∼P?h (s,a)f(s′). We now show
that {Xi} is a Martingale difference sequence. First we have E[Xi|Hh,i] = 0, since 1{sih, aih = s, a} is a deterministic
quantity given Hh,i. Second, we have |Xi| = 0 for (sih, a

i
h) 6= (s, a), and |Xi| ≤ H when (sih, a

i
h) = (s, a). Thus,

we have shown that it is a Martingale difference sequence.

Now we can apply Azuma-Hoeffding’s inequality (Theorem A.5). With probability at least 1− δ, we have:∣∣∣∣∣
k−1∑
i=0

Xi

∣∣∣∣∣ =

∣∣∣∣∣
k−1∑
i=0

1{(sih, aih) = (s, a)}f(sih+1)−Nk
h (s, a)Es′∼P?h (s,a)f(s′)

∣∣∣∣∣ ≤ 2H
√
Nk
h (s, a) ln(1/δ).

Now apply union bound over all s ∈ S, a ∈ A, h ∈ [0, . . . ,H − 1], k ∈ [0, . . . ,K − 1], we have that with probability
at least 1− δ, for all s, a, h, k, we have:∣∣∣∣∣

k−1∑
i=0

1{(sih, aih) = (s, a)}f(sih+1)−Nk
h (s, a)Es′∼P?h (s,a)f(s′)

∣∣∣∣∣ ≤ 2H
√
Nk
h (s, a) ln(SAKH/δ). (0.6)

Note that the above result only holds for the fixed f that we specified at the beginning of the proof. We are left to
perform a covering argument over all functions that map from S to [0, H]. We use a standard ε-net argument for that.
We abuse notation a bit and denote f as a vector in [0, H]S .

Note that ‖f‖2 ≤ H
√
S for any f : S 7→ [0, H]. A standard ε-net argument shows that we can construct an ε-net

Nε over [0, H]S with |Nε| ≤ (1 + 2H
√
S/ε)S , such that for any f ∈ [0, H]S , there exists a point f ′ ∈ Nε, such that

‖f − f ′‖2 ≤ ε. Note that the ε-net Nε is independent of the training data during the learning process.

Now using Eq. 0.6 and a union bound over all f inNε, we have that with probability at least 1−δ, for all s, a, k, h, f ∈
Nε, we have:∣∣∣∣∣

∑k−1
i=0 1{(sih, aih) = (s, a)}f(sih+1)

Nk
h (s, a)

− Es′∼P?h (s,a)f(s′)

∣∣∣∣∣ ≤ 2H

√
S ln(SAKH(1 + 2H

√
S/ε)/δ)

Nk
h (s, a)

.

Finally, for any f ∈ [0, H]S , denote its closest point in Nε as f ′, we have:∣∣∣∣∣
∑k−1
i=0 1{(sih, aih) = (s, a)}f(sih+1)

Nk
h (s, a)

− Es′∼P?h (s,a)f(s′)

∣∣∣∣∣
≤
∣∣∣∣∣
∑k−1
i=0 1{(sih, aih) = (s, a)}f ′(sih+1)

Nk
h (s, a)

− Es′∼P?h (s,a)f
′(s′)

∣∣∣∣∣+

∣∣∣∣∣
∑k−1
i=0 1{(sih, aih) = (s, a)}(f(sih+1)− f ′(sih+1))

Nk
h (s, a)

∣∣∣∣∣
+
∣∣∣Es′∼P?h (s,a)(f(s′)− f ′(s′))

∣∣∣
≤ 2H

√√√√S ln
(
SAKH(1 + 2H

√
S/ε)/δ

)
Nk
h (s, a)

+ 2ε,

where in the last inequality we use the fact that if ‖f − f ′‖2 ≤ ε, then |f(s)− f ′(s)| ≤ ε,∀s ∈ S.

Now we can set ε = 1/K and use the fact that Nk
h (s, a) ≤ K, we have:∣∣∣∣∣

∑k−1
i=0 1{(sih, aih) = (s, a)}f(sih+1)

Nk
h (s, a)

− Es′∼P?h (s,a)f(s′)

∣∣∣∣∣ ≤ 2H

√√√√S ln
(
SAKH(1 + 2HK

√
S)/δ

)
Nk
h (s, a)

+
2

K

≤ 4H

√
S ln(4H2S2K2A/δ)

Nk
h (s, a)

≤ 8H

√
S ln(HSKA/δ)

Nk
h (s, a)

,
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where the last inequality uses the simple inequality ln(4H2S2K2A) ≤ 4 ln(HSKA). This concludes the proof.

7.4 An Improved Regret Bound

In this section, we show that UCB-VI also enjoys the regret bound Õ
(
H2
√
SAK +H3S2A

)
.

Theorem 7.6 (Improved Regret Bound for UCB-VI). The total expected regret is bounded as follows:

E

[
KV ?(s0)−

K−1∑
k=0

V π
k

(s0)

]
≤ 8eH2

√
SAK ·

√
ln(SAH2K2) + 2eH3S2A · ln(K) ln(SAH2K2) = Õ

(
H2
√
SAK +H3S2A

)
.

Note that comparing to the regret bound we had in the previous section, this new regret improves the S dependence in
the leading order term (i.e., the term that contains

√
K), but at the cost of introducing a lower order term H3S2A.

We first give an improved version of the model error presented in Lemma 7.2.

Lemma 7.7. With probability at least 1− δ, for all h, k, s, a, and all f : S 7→ [0, H], we have:∣∣∣∣(P̂ kh (·|s, a)− P ?h (·|s, a)
)>

f

∣∣∣∣ ≤ Es′∼P?h (·|s,a)f(s′)

H
+

3H2SL

Nk
h (s, a)

.

Below we prove this lemma. Recall the definition of P̂ kh (s′|s, a) in Eq. 0.1. We can use Azume-Bernstein’s inequality
to bound |P̂ kh (s′|s, a)− P ?h (s′|s, a)|.

Lemma 7.8. With probability at least 1− δ, for all s, a, k, h, we have:

∣∣∣P̂ kh (s′|s, a)− P ?h (s′|s, a)
∣∣∣ ≤√2P ?h (s′|s, a)L

Nk
h (s, a)

+
2L

Nk
h (s, a)

,

where L := ln(SAKH/δ).

Proof: Consider a fixed tuple (s, a, h, k). Define Hh,i as the history starting from the beginning of iteration 0 to time
step h at iteration i (including step h, i.e., up to sih, a

i
h). Define random variables {Xi}i≥0 as Xi = 1{sih, aih, sih+1 =

s, a, s′} − 1{sih, aih = s, a}P ?h (s′|s, a). We now show that {Xi} is a Martingale difference sequence. Note that
E [Xi|Hh,i] = 0. We have |Xi| ≤ 1. To use Azuma-Bernstein’s inequality, we note that E[X2

i |Hh,i] is bounded as:

E[X2
i |Hh,i] = 1{sih, aih = s, a}P ?h (s′|s, a)(1− P ?h (s′|s, a)),

where we use the fact that the variance of a Bernoulli with parameter p is p(1−p). This means that
∑k−1
i=0 E[X2

i |Hh,i] =
P ?h (s′|s, a)(1−P ?h (s′|s, a))Nk

h (s, a). Now apply Bernstein’s inequality on the martingale difference sequence {Xi},
we have: ∣∣∣∣∣

k−1∑
i=0

Xi

∣∣∣∣∣ ≤
√

2P ?h (s′|s, a)(1− P ?h (s′|s, a)) ln(1/δ)

Nk
h (s, a)

+
2 ln(1/δ)

Nk
h (s, a)

≤
√

2P ?h (s′|s, a) ln(1/δ)

Nk
h (s, a)

+
2 ln(1/δ)

Nk
h (s, a)
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Recall the definition of L := ln(SAHK/δ). Apply a union bound over all s ∈ S, a ∈ A, h ∈ [0, . . . ,H − 1], k ∈
[0, . . . ,K − 1], we conclude the proof.

Now we are ready to prove Lemma 7.7.

Proof:[Proof of Lemma 7.7] Let us condition on the event in Lemma 7.8 being true, of which the probability is at least
1− δ.

Take any function f : S 7→ [0, H], we have:

∣∣∣∣(P̂ kh (·|s, a)− P ?h (·|s, a)
)>

f

∣∣∣∣
≤
∑
s′∈S

∣∣∣P̂ kh (s′|s, a)− P ?h (·|s, a)
∣∣∣ f(s′) ≤

∑
s′∈S

√
2LP ?h (s′|s, a)f2(s′)

Nk
h (s, a)

+
∑
s′∈S

2Lf(s′)

Nk
h (s, a)

≤
∑
s′∈S

√
2LP ?h (s′|s, a)f2(s′)

Nk
h (s, a)

+
2SHL

Nk
h (s, a)

≤
√
S

√∑
s′∈S 2LP ?h (s′|s, a)f2(s′)

Nk
h (s, a)

+
2SHL

Nk
h (s, a)

=

√
2H2SL

Nk
h (s, a)

·
∑
s′∈S P

?
h (s′|s, a)f2(s′)

H2
+

2SHL

Nk
h (s, a)

≤ H2SL

Nk
h (s, a)

+
Es′∼P?h (·|s,a)f

2(s′)

H2
+

2SHL

Nk
h (s, a)

≤
Es′∼P?h (·|s,a)f(s′)

H
+

H2SL

Nk
h (s, a)

+
2SHL

Nk
h (s, a)

,

where the third inequality uses that condition that ‖f‖∞ ≤ H , the fourth inequality uses Cauchy-Schwarz inequality,
the fifth inequality uses the inequality that ab ≤ (a2 + b2)/2 for any real numbers a and b, and the last inequality uses
the condition that ‖f‖∞ ≤ H again. This concludes the proof.

So far in Lemma 7.7, we have not specify what function f we will use. The following lemma instantiate f to be

V̂ kh+1 − V ?h+1. Recall the bonus definition, bkh(s, a) := 2H
√
L/Nk

h (s, a) where L := ln(SAHK/δ).

Lemma 7.9. Assume the events in Lemma 7.7 and Lemma 7.3 are true. For all s, a, k, h, set f := V̂ kh+1 − V ?h+1, we
have:

∣∣∣∣(P̂ kh (·|s, a)− P ?h (·|s, a)
)>

f

∣∣∣∣ ≤ ξkh(s, a) +
e

H
E

[
H−1∑
τ=h+1

(
ξkτ (sτ , aτ ) + bkτ (sτ , aτ )

) ∣∣sh = s, ah = a, πk

]

where ξiτ (s, a) = 3H2SL
Niτ (s,a) , for any τ ∈ [0, . . . ,H − 1], i ∈ [0, . . . ,K − 1], and the expectation is with respect to the

randomness from the event of following policy πk from (s, a) starting from time step h.

Proof: Using Lemma 7.7 and the fact that f := V̂ kh+1 − V ?h+1, we have:

∣∣∣∣(P̂ kh (·|s, a)− P ?h (·|s, a)
)>

f

∣∣∣∣ ≤ Es′∼P?h (·|s,a)(V̂
k
h+1(s′)− V ?h+1(s′))

H
+ ξkh(s, a). (0.7)
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Now consider V̂ kh+1(s′)− V ?h+1(s′)), we have:

V̂ kh+1(s′)− V ?h+1(s′) ≤ V̂ kh+1(s′)−
(
r(s′, πk(s′)) + P ?h+1(·|s′, πk(s′))>V ?h+2

)
≤ r(s′, πk(s′)) + P̂ kh+1(·|s′, πk(s′))>V̂ kh+2 −

(
r(s′, πk(s′)) + P ?h+1(·|s′, πk(s′))>V ?h+2

)
= P̂ kh+1(·|s′, πk(s′))>V̂ kh+2 − P ?h+1(·|s′, πk(s′))>V̂ kh+2 + P ?h+1(·|s′, πk(s′))>

(
V̂ kh+2 − V ?h+2

)
=
(
P̂ kh+1(·|s′, πk(s′))− P ?h+1(·|s′, πk(s′))

)> (
V̂ kh+2 − V ?h+2

)
+
(
P̂ kh+1(·|s′, πk(s′))− P ?h+1(·|s′, πk(s′))

)>
V ?h+2

+ P ?h+1(·|s′, πk(s′))>
(
V̂ kh+2 − V ?h+2

)
where the first inequality uses the fact that V ?h+1(s′) = maxa′(r(s

′, a′) +P ?h+1(·|s′, a′)>V ?h+2), the second inequality
uses the definition of V̂ kh+1 and πk. Note that the second term in the RHS of the above inequality can be upper bounded
exactly by the bonus using Lemma 7.3, and the first term can be further upper bounded using the same operation that
we had in Lemma 7.7, i.e.,

(
P̂ kh+1(·|s′, πk(s′))− P ?h+1(·|s′, πk(s′))

)> (
V̂ kh+2 − V ?h+2

)
≤
P ?h+1(·|s′, πk(s′))>

(
V̂ kh+2 − V ?h+2

)
H

+ ξkh+1(s′, πk(s′)).

Combine the above inequalities together, we arrive at:

V̂ kh+1(s′)− V ?h+1(s′) ≤ bkh+1(s′, πk(s′)) + ξkh+1(s′, πk(s′)) +

(
1 +

1

H

)
Es′′∼P?h+1(s′,πk(s′))

(
V̂ kh+2(s′′)− V ?h+2(s′′)

)
.

We can recursively apply the same operation on V̂ kh+2(s′′)− V ?h+2(s′′) till step H , we have:

V̂ kh+1(s′)− V ?h+1(s′) ≤ E

[
H−1∑
τ=h+1

(
1 +

1

H

)τ−h−1 (
ξkτ (sτ , aτ ) + bkτ (sτ , aτ )

) ∣∣sh+1 = s′, πk

]

≤ eE
[
H−1∑
τ=h+1

(
ξkτ (sτ , aτ ) + bkτ (sτ , aτ )

) ∣∣sh+1 = s′, πk

]
,

where the last inequality uses the fact that (1 + 1/H)x ≤ e for any x ∈ N+. Substitute the above inequality into
Eq. 0.7, we get:

∣∣∣∣(P̂ kh (·|s, a)− P ?h (·|s, a)
)>

f

∣∣∣∣ ≤ ξkh(s, a) +
e

H
E

[
H−1∑
τ=h+1

(
ξkτ (sτ , aτ ) + bkτ (sτ , aτ )

) ∣∣sh = s, ah = a, πk

]

Now we are ready to derive a refined upper bound for per-episode regret.

Lemma 7.10. Assume the events in Lemma 7.9 and Lemma 7.4 (optimism) hold. For all k ∈ [0,K − 1], we have:

V ?(s0)− V πk(s0) ≤ e
H−1∑
h=0

E
sh,ah∼dπ

k

h

[
2bkh(sh, ah) + ξkh(sh, ah)

]
.
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Proof: Via optimism in Lemma 7.4, we have:

V ?(s0)− V πk(s0) ≤ V̂ k0 (s0)− V πk0 (s0) ≤
H−1∑
h=0

E
sh,ah∼dπ

k

h

[
bkh(sh, ah) +

(
P̂ kh (·|sh, ah)− P ?(·|sh, ah)

)
· V̂ kh+1

]
=

H−1∑
h=0

E
sh,ah∼dπ

k

h

[
bkh(sh, ah) +

(
P̂ kh (·|sh, ah)− P ?(·|sh, ah)

)> (
V̂ kh+1 − V ?h+1

)
+
(
P̂ kh (·|sh, ah)− P ?(·|sh, ah)

)>
V ?h+1

]

≤
H−1∑
h=0

E
sh,ah∼dπ

k

h

[
2bkh(sh, ah) +

(
P̂ kh (·|sh, ah)− P ?(·|sh, ah)

)> (
V̂ kh+1 − V ?h+1

)]

≤
H−1∑
h=0

E
sh,ah∼dπ

k

h

[
2bkh(sh, ah) + ξkh(sh, ah) +

e

H
E

[
H−1∑
τ=h+1

(
ξkτ (sτ , aτ ) + bkτ (sτ , aτ )

) ∣∣πk]]

≤ e
H−1∑
h=0

E
sh,ah∼dπ

k

h

[
2bkh(sh, ah) + ξkh(sh, ah)

]
where the first inequality uses optimism, and the fourth inequality uses Lemma 7.9, and the last inequality rearranges
by grouping same terms together.

To conclude the final regret bound, let us denote the event Emodel as the joint event in Lemma 7.3 and Lemma 7.8,
which holds with probability at least 1− 2δ.

Proof:[Proof of Theorem 7.6] Following the derivation we have in Eq. 0.5, we decompose the expected regret bound
as follows:

E

[
K−1∑
k=0

V ?(s0)− V πk(s0)

]
≤ E

[
1{Emodel}

(
K−1∑
k=0

V ?(s0)− V πk(s0)

)]
+ 2δKH

≤ eE
[
K−1∑
k=0

H−1∑
h=0

[
2bkh(skh, a

k
h) + ξkh(skh, a

k
h)
]]

+ 2δKH,

where the last inequality uses Lemma 7.10. Using Lemma 7.5, we have that:

K−1∑
k=0

H−1∑
h=0

2bkh(skh, a
k
h) ≤ 4H

√
L
∑
k

∑
h

1√
Nk
h (skh, a

k
h)
≤ 8H2

√
SAKL.

For
∑
k

∑
h ξ

k
h(skh, a

k
h), we have:

K−1∑
k=0

H−1∑
h=0

ξkh(skh, a
k
h) = 2H2SL

K−1∑
k=0

H−1∑
h=0

1

Nk
h (sih, a

k
h)

= 2H2SL

H−1∑
h=0

∑
s,a

NKh (s,a)∑
i=1

1

i

≤ 2H2SALHS ln(K) = 2H3S2AL ln(K),

where in the last inequality, we use the fact that NK
h (s, a) ≤ K for all s, a, h, and the inequality

∑t
i=1 1/i ≤ ln(t).

Putting things together, and setting δ = 1/(KH), we conclude the proof.

7.5 Phased Q-learning

to be added
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7.6 Bibliographic Remarks and Further Readings

The first provably correct PAC algorithm for reinforcement learning (which finds a near optimal policy) was due to
Kearns and Singh [2002], which provided the E3 algorithm; it achieves polynomial sample complexity in tabular
MDPs. Brafman and Tennenholtz [2002] presents the Rmax algorithm which provides a refined PAC analysis over E3.
Both are model based approaches [Kakade, 2003] improves the sample complexity to be O(S2A). Both E3 and Rmax
uses the concept of absorbing MDPs to achieve optimism and balance exploration and exploitation.

Jaksch et al. [2010] provides the first O(
√

(T )) regret bound, where T is the number of timesteps in the MDP (T is
proportional toK in our setting); this dependence on T is optimal. Subsequently, Azar et al. [2017], Dann et al. [2017]
provide algorithms that, asymptotically, achieve minimax regret bound in tabular MDPs. By this, we mean that for
sufficiently large T (for T ≥ Ω(|S|2)), the results in Azar et al. [2017], Dann et al. [2017] obtain optimal dependencies
on |S| and |A|. The requirement that T ≥ Ω(|S|2) before these bounds hold is essentially the requirement that non-
trivial model accuracy is required. It is an opent question to remove this dependence.

Lower bounds are provided in [Dann and Brunskill, 2015, Osband and Van Roy, 2016, Azar et al., 2017].

Further exploration strategies. Refs and discussion for Q-learning, reward free, and thompson sampling to
be added...
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Chapter 8

Linearly Parameterized MDPs

In this chapter, we consider learning and exploration in linearly parameterized MDPs—the linear MDP. Linear MDP
generalizes tabular MDPs into MDPs with potentially infinitely many state and action pairs.

This chapter largely follows the model and analysis first provided in [Jin et al., 2020].

8.1 Setting

We consider episodic finite horizon MDP with horizon H , M = {S,A, {rh}h, {Ph}h, H, s0}, where s0 is a fixed
initial state, rh : S × A 7→ [0, 1] and Ph : S × A 7→ ∆(S) are time-dependent reward function and transition kernel.
Note that for time-dependent finite horizon MDP, the optimal policy will be time-dependent as well. For simplicity, we
overload notations a bit and denote π = {π0, . . . , πH−1}, where each πh : S 7→ A. We also denote V π := V π0 (s0),
i.e., the expected total reward of π starting at h = 0 and s0.

We define the learning protocol below. Learning happens in an episodic setting. Every episode k, learner first proposes
a policy πk based on all the history information up to the end of episode k − 1. The learner then executes πk in the
underlying MDP to generate a single trajectory τk = {skh, akh}H−1

h=0 with ah = πkh(skh) and skh+1 ∼ Ph(·|skh, akh). The
goal of the learner is to minimize the following cumulative regret over N episodes:

Regret := E

[
K−1∑
k=0

(
V ? − V πk

)]
,

where the expectation is with respect to the randomness of the MDP environment and potentially the randomness of
the learner (i.e., the learner might make decisions in a randomized fashion).

8.1.1 Low-Rank MDPs and Linear MDPs

Note that here we do not assume S and A are finite anymore. Indeed in this note, both of them could be continuous.
Without any further structural assumption, the lower bounds we saw in the Generalization Lecture forbid us to get a
polynomially regret bound.

The structural assumption we make in this note is a linear structure in both reward and the transition.

Definition 8.1 (Linear MDPs). Consider transition {Ph} and {rh}h. A linear MDP has the following structures on rh
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and Ph:

rh(s, a) = θ?h · φ(s, a), Ph(·|s, a) = µ?hφ(s, a),∀h

where φ is a known state-action feature map φ : S ×A 7→ Rd, and µ?h ∈ R|S|×d. Here φ, θ?h are known to the learner,
while µ? is unknown. We further assume the following norm bound on the parameters: (1) sups,a ‖φ(s, a)‖2 ≤ 1, (2)
‖v>µ?h‖2 ≤

√
d for any v such that ‖v‖∞ ≤ 1, and all h, and (3) ‖θ?h‖2 ≤ W for all h. We assume rh(s, a) ∈ [0, 1]

for all h and s, a.

The model essentially says that the transition matrix Ph ∈ R|S|×|S||A| has rank at most d, and Ph = µ?hΦ. where
Φ ∈ Rd×|S||A| and each column of Φ corresponds to φ(s, a) for a pair s, a ∈ S ×A.

Linear Algebra Notations For real-valued matrix A, we denote ‖A‖2 = supx:‖x‖2=1 ‖Ax‖2 which denotes the
maximum singular value of A. We denote ‖A‖F as the Frobenius norm ‖A‖2F =

∑
i,j A

2
i,j where Ai,j denotes the

i, j’th entry ofA. For any Positive Definite matrix Λ, we denote x>Λx = ‖x‖2Λ. We denote det(A) as the determinant
of the matrix A. For a PD matrix Λ, we note that det(Λ) =

∏d
i=1 σi where σi is the eigenvalues of Λ. For notation

simplicity, during inequality derivation, we will use .,h to suppress all absolute constants. We will use Õ to suppress
all absolute constants and log terms.

8.2 Planning in Linear MDPs

We first study how to do value iteration in linear MDP if µ is given.

We start from Q?H−1(s, a) = θ?H−1 · φ(s, a), and π?H−1(s) = argmaxaQ
?
H−1(s, a) = argmaxa θ

?
H−1 · φ(s, a), and

V ?H−1(s) = argmaxaQ
?
H−1(s, a).

Now we do dynamic programming from h+ 1 to h:

Q?h(s, a) = θ?h · φ(s, a) + Es∼Ph(·|s,a)V
?
h+1(s′) = θ?h · φ(s, a) + Ph(·|s, a) · V ?h+1 = θ?h · φ(s, a) + (µ?hφ(s, a))>V ?h+1

(0.1)

= φ(s, a) ·
(
θ?h + (µ?h)>V ?h+1

)
= φ(s, a) · wh, (0.2)

where we denote wh := θ?h + (µ?h)>V ?h+1. Namely we see that Q?h(s, a) is a linear function with respect to φ(s, a)!
We can continue by defining π?h(s) = argmaxaQ

?
h(s, a) and V ?h (s) = maxaQ

?
h(s, a).

At the end, we get a sequence of linear Q?, i.e., Q?h(s, a) = wh · φ(s, a), and the optimal policy is also simple,
π?h(s) = argmaxa wh · φ(s, a), for all h = 0, . . . ,H − 1.

One key property of linear MDP is that a Bellman Backup of any function f : S 7→ R is a linear function with respect
to φ(s, a). We summarize the key property in the following claim.

Claim 8.2. Consider any arbitrary function f : S 7→ [0, H]. At any time step h ∈ [0, . . . H − 1], there must exist a
w ∈ Rd, such that, for all s, a ∈ S ×A:

rh(s, a) + Ph(·|s, a) · f = w>φ(s, a).

The proof of the above claim is essentially the Eq. 0.1.

86



8.3 Learning Transition using Ridge Linear Regression

In this section, we consider the following simple question: given a dataset of state-action-next state tuples, how can
we learn the transition Ph for all h?

Note that µ? ∈ R|S|×d. Hence explicitly writing down and storing the parameterization µ? takes time at least |S|. We
show that we can represent the model in a non-parametric way.

We consider a particular episode n. Similar to Tabular-UCBVI, we learn a model at the very beginning of the episode
n using all data from the previous episodes (episode 1 to the end of the episode n− 1). We denote such dataset as:

Dnh =
{
sih, a

i
h, s

i
h+1

}n−1

i=0
.

We maintain the following statistics using Dnh :

Λnh =
n−1∑
i=0

φ(sih, a
i
h)φ(sih, a

i
h)> + λI,

where λ ∈ R+ (it will be set to 1 eventually, but we keep it here for generality).

To get intuition of Λn, think about the tabular setting where φ(s, a) is a one-hot vector (zeros everywhere except that
the entry corresponding to (s, a) is one). Then Λnh is a diagonal matrix and the diagonal entry contains Nn(s, a)—the
number of times (s, a) has been visited.

We consider the following multi-variate linear regression problem. Denote δ(s) as a one-hot vector that has zero
everywhere except that the entry corresponding to s is one. Denote εih = P (·|sih, aih) − δ(sih+1). Conditioned on
history Hih (history Hih denotes all information from the very beginning of the learning process up to and including
(sih, a

i
h)), we have:

E
[
εih|Hih

]
= 0,

simply because sih+1 is sampled from Ph(·|sih, aih) conditioned on (sih, a
i
h). Also note that ‖εih‖1 ≤ 2 for all h, i.

Since µ?hφ(sih, a
i
h) = Ph(·|sih, aih), and δ(sih+1) is an unbiased estimate of Ph(·|sih, aih) conditioned on sih, a

i
h, it is

reasonable to learn µ? via regression from φ(sih, a
i
h) to δ(sih+1). This leads us to the following ridge linear regression:

µ̂nh = argminµ∈R|S|×d

n−1∑
i=0

∥∥µφ(sih, a
i
h)− δ(sih+1)

∥∥2

2
+ λ‖µ‖2F .

Ridge linear regression has the following closed-form solution:

µ̂nh =

n−1∑
i=0

δ(sih+1)φ(sih, a
i
h)>(Λnh)−1 (0.3)

Note that µ̂nh ∈ R|S|×d, so we never want to explicitly store it. Note that we will always use µ̂nh together with a specific
s, a pair and a value function V (think about value iteration case), i.e., we care about P̂nh (·|s, a) ·V := (µ̂nhφ(s, a)) ·V ,
which can be re-written as:

P̂nh (·|s, a) · V := (µ̂nhφ(s, a)) · V = φ(s, a)>
n−1∑
i=0

(Λnh)−1φ(sih, a
i
h)V (sih+1),
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where we use the fact that δ(s)>V = V (s). Thus the operator P̂nh (·|s, a) · V simply requires storing all data and can
be computed via simple linear algebra and the computation complexity is simply poly(d, n)—no poly dependency on
|S|.
Let us calculate the difference between µ̂nh and µ?h.

Lemma 8.3 (Difference between µ̂h and µ?h). For all n and h, we must have:

µ̂nh − µ?h = −λµ?h (Λnh)
−1

+

n−1∑
i=1

εihφ(sih, a
i
h)> (Λnh)

−1
.

Proof: We start from the closed-form solution of µ̂nh:

µ̂nh =

n−1∑
i=0

δ(sih+1)φ(sih, a
i
h)>(Λnh)−1 =

n−1∑
i=0

(P (·|sih, aih) + εnh)φ(sih, a
i
h)>(Λnh)−1

=

n−1∑
i=0

(µ?hφ(sih, a
i
h) + εih)φ(sih, a

i
h)>(Λnh)−1 =

n−1∑
i=0

µ∗hφ(sih, a
i
h)φ(sih, a

i
h)>(Λnh)−1 +

n−1∑
i=0

εihφ(sih, a
i
h)>(Λnh)−1

=

n−1∑
i=0

µ?hφ(sih, a
i
h)φ(sih, a

i
h)>(Λnh)−1 +

n−1∑
i=0

εihφ(sih, a
i
h)>(Λnh)−1

= µ?h(Λnh − λI)(Λnh)−1 +

n−1∑
i=0

εihφ(sih, a
i
h)>(Λnh)−1 = µ∗h − λµ?h(Λnh)−1 +

n−1∑
i=0

εihφ(sih, a
i
h)>(Λnh)−1.

Rearrange terms, we conclude the proof.

Lemma 8.4. Fix V : S 7→ [0, H]. For all n and s, a ∈ S ×A, and h, with probability at least 1− δ, we have:∥∥∥∥∥
n−1∑
i=0

φ(sih, a
i
h)(V >εih)

∥∥∥∥∥
(Λnh)−1

≤ 3H

√
ln
H det(Λnh)1/2 det(λI)−1/2

δ
.

Proof: We first check the noise terms {V >εih}h,i. Since V is independent of the data (it’s a pre-fixed function), and
by linear property of expectation, we have:

E
[
V >εih|Hih

]
= 0, |V >εih| ≤ ‖V ‖∞‖εih‖1 ≤ 2H,∀h, i.

Hence, this is a Martingale difference sequence. Using the Self-Normalized vector-valued Martingale Bound (Lemma A.9),
we have that for all n, with probability at least 1− δ:∥∥∥∥∥

n−1∑
i=0

φ(sih, a
i
h)(V >εih)

∥∥∥∥∥
(Λnh)−1

≤ 3H

√
ln

det(Λnh)1/2 det(λI)−1/2

δ
.

Apply union bound over all h ∈ [H], we get that with probability at least 1− δ, for all n, h:∥∥∥∥∥
n−1∑
i=0

φ(sih, a
i
h)(V >εih)

∥∥∥∥∥
(Λnh)−1

≤ 3H

√
ln
H det(Λnh)1/2 det(λI)−1/2

δ
. (0.4)
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8.4 Uniform Convergence via Covering

Now we take a detour first and consider how to achieve a uniform convergence result over a function class F that
contains infinitely many functions. Previously we know how to get uniform convergence if F is finite—we simply do
a union bound. However, when F contains infinitely many functions, we cannot simply apply a union bound. We will
use the covering argument here.

Consider the following ball with radius R: Θ = {θ ∈ Rd : ‖θ‖2 ≤ R ∈ R+}. Fix an ε. An ε-net Nε ⊂ Θ is a set
such that for any θ ∈ Θ, there exists a θ′ ∈ Nε, such that ‖θ − θ′‖2 ≤ ε. We call the smallest ε-net as ε-cover. Abuse
notations a bit, we simply denote Nε as the ε-cover.

The ε-covering number is the size of ε-cover Nε. We define the covering dimension as ln (|Nε|)

Lemma 8.5. The ε-covering number of the ball Θ = {θ ∈ Rd : ‖θ‖2 ≤ R ∈ R+} is upper bounded by (1 + 2R/ε)d.

We can extend the above definition to a function class. Specifically, we look at the following function. For a triple of
(w, β,Λ) where w ∈ Rd and ‖w‖2 ≤ L, β ∈ [0, B], and Λ such that σmin(Λ) ≥ λ, we define fw,β,Λ : S 7→ [0, R] as
follows:

fw,β,Λ(s) = min

{
max
a

(
w>φ(s, a) + β

√
φ(s, a)>Λ−1φ(s, a)

)
, H

}
,∀s ∈ S. (0.5)

We denote the function class F as:

F = {fw,β,Λ : ‖w‖2 ≤ L, β ∈ [0, B], σmin(Λ) ≥ λ}. (0.6)

Note that F contains infinitely many functions as the parameters are continuous. However we will show that it has
finite covering number that scales exponentially with respect to the number of parameters in (w, β,Λ).

Why do we look at F? As we will see later in this chapter F contains all possible Q̂h functions one could encounter
during the learning process.

Lemma 8.6 (ε-covering dimension of F). Consider F defined in Eq. 0.6. Denote its ε-cover as Nε with the `∞ norm
as the distance metric, i.e., d(f1, f2) = ‖f1 − f2‖∞ for any f1, f2 ∈ F . We have that:

ln (|Nε|) ≤ d ln(1 + 6L/ε) + ln(1 + 6B/(
√
λε)) + d2 ln(1 + 18B2

√
d/(λε2)).

Note that the ε-covering dimension scales quadratically with respect to d.

Proof: We start from building a net over the parameter space (w, β,Λ), and then we convert the net over parameter
space to an ε-net over F under the `∞ distance metric.
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We pick two functions that corresponding to parameters (w, β,Λ) and (ŵ, β̂, Λ̂).

|f(s)− f̂(s)| ≤
∣∣∣∣max
a

(
w>φ(s, a) + β

√
φ(s, a)>Λ−1φ(s, a)

)
−max

a

(
ŵ>φ(s, a) + β̂

√
φ(s, a)>Λ̂−1φ(s, a)

)∣∣∣∣
≤ max

a

∣∣∣∣(w>φ(s, a) + β
√
φ(s, a)>Λ−1φ(s, a)

)
−
(
ŵ>φ(s, a) + β̂

√
φ(s, a)>Λ̂−1φ(s, a)

)∣∣∣∣
≤ max

a

∣∣(w − ŵ)>φ(s, a)
∣∣+ max

a

∣∣∣∣(β − β̂)
√
φ(s, a)>Λ−1φ(s, a)

∣∣∣∣
+ max

a

∣∣∣∣β̂(
√
φ(s, a)>Λ−1φ(s, a)−

√
φ(s, a)>Λ̂−1φ(s, a))

∣∣∣∣
≤ ‖w − ŵ‖2 + |β − β̂|/

√
λ+B

√∣∣∣φ(s, a)>(Λ−1 − Λ̂−1)φ(s, a)
∣∣∣

≤ ‖w − ŵ‖2 + |β − β̂|/
√
λ+B

√
‖Λ−1 − Λ̂−1‖F

Note that Λ−1 is a PD matrix with σmax(Λ−1) ≤ 1/λ.

Now we consider the ε/3-Net Nε/3,w over {w : ‖w‖2 ≤ L},
√
λε/3-net N√λε/3,β over interval [0, B] for β, and

ε2/(9B2)-net Nε2/(9B),Λ over {Λ : ‖Λ‖F ≤
√
d/λ}. The product of these three nets provide a ε-cover for F , which

means that that size of the ε-net Nε for F is upper bounded as:

ln |Nε| ≤ ln |Nε/3,w|+ ln |N√λε/3,β |+ ln |Nε2/(9B2),Λ|
≤ d ln(1 + 6L/ε) + ln(1 + 6B/(

√
λε)) + d2 ln(1 + 18B2

√
d/(λε2)).

Remark Covering gives a way to represent the complexity of function class (or hypothesis class). Relating to VC,
covering number is upper bound roughly by exp(d) with d being the VC-dimension. However, there are cases where
VC-dimensional is infinite, but covering number if finite.

Now we can build a uniform convergence argument for all f ∈ F .

Lemma 8.7 (Uniform Convergence Results). Set λ = 1. Fix δ ∈ (0, 1). For all n, h, all s, a, and all f ∈ F , with
probability at least 1− δ, we have:∣∣∣(P̂nh (·|s, a)− P (·|s, a)

)
· f
∣∣∣ . H ‖φ(s, a)‖(Λnh)−1

(√
d ln(1 + 6L

√
N) + d

√
ln(1 + 18B2

√
dN) +

√
ln
H

δ

)
.

Proof: Recall Lemma 8.4, we have with probability at least 1 − δ, for all n, h, for a pre-fixed V (independent of the
random process):∥∥∥∥∥

n−1∑
i=1

φ(sih, a
i
h)(V >εih)

∥∥∥∥∥
2

(Λnh)−1

≤ 9H2ln
H det(Λnh)1/2 det(λI)−1/2

δ
≤ 9H2

(
ln
H

δ
+ d ln (1 +N)

)
where we have used the fact that ‖φ‖2 ≤ 1, λ = 1, and ‖Λnh‖2 ≤ N + 1.

Denote the ε-cover of F as Nε. With an application of a union bound over all functions in Nε, we have that with
probability at least 1− δ, for all V ∈ Nε, all n, h, we have:∥∥∥∥∥

n−1∑
i=1

φ(sih, a
i
h)(V >εih)

∥∥∥∥∥
2

(Λnh)−1

≤ 9H2

(
ln
H

δ
+ ln (|Nε|) + d ln (1 +N)

)
.
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Recall Lemma 8.6, substitute the expression of ln |Nε| into the above inequality, we get:∥∥∥∥∥
n−1∑
i=1

φ(sih, a
i
h)(V >εih)

∥∥∥∥∥
2

(Λnh)−1

≤ 9H2

(
ln
H

δ
+ d ln(1 + 6L/ε) + d2 ln(1 + 18B2

√
d/ε2) + d ln (1 +N)

)
.

Now consider an arbitrary f ∈ F . By the definition of ε-cover, we know that for f , there exists a V ∈ Nε, such that
‖f − V ‖∞ ≤ ε. Thus, we have:∥∥∥∥∥
n−1∑
i=1

φ(sih, a
i
h)(f>εih)

∥∥∥∥∥
2

(Λnh)−1

≤ 2

∥∥∥∥∥
n−1∑
i=1

φ(sih, a
i
h)(V >εih)

∥∥∥∥∥
2

(Λnh)−1

+ 2

∥∥∥∥∥
n−1∑
i=1

φ(sih, a
i
h)((V − f)>εih)

∥∥∥∥∥
2

(Λnh)−1

≤ 2

∥∥∥∥∥
n−1∑
i=1

φ(sih, a
i
h)(V >εih)

∥∥∥∥∥
2

(Λnh)−1

+ 8ε2N

≤ 9H2

(
ln
H

δ
+ d ln(1 + 6L/ε) + d2 ln(1 + 18B2

√
d/ε2) + d ln (1 +N)

)
+ 8ε2N,

where in the second inequality we use the fact that ‖∑n−1
i=1 φ(sih, a

i
h)(V − f)>εih‖2(Λnh)−1 ≤ 4ε2N , which is from

∥∥∥∥∥
n−1∑
i=1

φ(sih, a
i
h)(V − f)>εih

∥∥∥∥∥
2

(Λnh)−1

≤ ‖
n−1∑
i=1

φ(sih, a
i
h)2ε‖2(Λnh)−1 ≤ 4ε2

λ
‖
n−1∑
i=1

φ(sih, a
i
h)‖2 ≤ 4ε2N.

Set ε = 1/
√
N , we get:∥∥∥∥∥

n−1∑
i=1

φ(sih, a
i
h)(f>εih)

∥∥∥∥∥
2

(Λnh)−1

≤ 9H2

(
ln
H

δ
+ d ln(1 + 6L

√
N) + d2 ln(1 + 18B2

√
dN) + d ln (1 +N)

)
+ 8

. H2

(
ln
H

δ
+ d ln(1 + 6L

√
N) + d2 ln(1 + 18B2

√
dN)

)
,

where we recall . ignores absolute constants.

Now recall that we can express
(
P̂nh (·|s, a)− P (·|s, a)

)
· f = φ(s, a)>(µ̂nh − µ?h)>f . Recall Lemma 8.3, we have:

|(µ̂nhφ(s, a)− µ?hφ(s, a)) · f | ≤
∣∣∣λφ(s, a)> (Λnh)

−1
(µ?h)

>
f
∣∣∣+

∣∣∣∣∣
n−1∑
i=1

φ(s, a)>(Λnh)−1φ(sih, a
i
h)(εih)>f

∣∣∣∣∣
. H
√
d ‖φ(s, a)‖(Λnh)−1 + ‖φ(s, a)‖(Λnh)−1

√(
H2

(
ln
H

δ
+ d ln(1 + 6L

√
N) + d2 ln(1 + 18B2

√
dN)

))

h H ‖φ(s, a)‖(Λnh)−1

(√
ln
H

δ
+

√
d ln(1 + 6L

√
N) + d

√
ln(1 + 18B2

√
dN)

)
.
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8.5 Algorithm

Our algorithm, Upper Confidence Bound Value Iteration (UCB-VI) will use reward bonus to ensure optimism. Specif-
ically, we will the following reward bonus, which is motivated from the reward bonus used in linear bandit:

bnh(s, a) = β
√
φ(s, a)>(Λnh)−1φ(s, a), (0.7)

where β contains poly of H and d, and other constants and log terms. Again to gain intuition, please think about what
this bonus would look like when we specialize linear MDP to tabular MDP.

Algorithm 6 UCBVI for Linear MDPs
1: Input: parameters β, λ
2: for n = 1 . . . N do
3: Compute P̂nh for all h (Eq. 0.3)
4: Compute reward bonus bnh for all h (Eq. 0.7)
5: Run Value-Iteration on {P̂nh , rh + bnh}H−1

h=0 (Eq. 0.8)
6: Set πn as the returned policy of VI.
7: end for

With the above setup, now we describe the algorithm. Every episode n, we learn the model µ̂nh via ridge linear
regression. We then form the quadratic reward bonus as shown in Eq. 0.7. With that, we can perform the following
truncated Value Iteration (always truncate the Q function at H):

V̂ nH(s) = 0,∀s,

Q̂nh(s, a) = θ? · φ(s, a) + β
√
φ(s, a)>(Λnh)−1φ(s, a) + φ(s, a)>(µ̂nh)>V̂ nh+1

= β
√
φ(s, a)>(Λnh)−1φ(s, a) + (θ? + (µ̂nh)>V̂ nh+1)>φ(s, a),

V̂ nh (s) = min{max
a

Q̂nh(s, a), H}, πnh(s) = argmaxa Q̂
n
h(s, a). (0.8)

Note that above Q̂nh contains two components: a quadratic component and a linear component. And V̂ nh has the format
of fw,β,Λ defined in Eq. 0.5.

The following lemma bounds the norm of linear weights in Q̂nh .

Lemma 8.8. Assume β ∈ [0, B]. For all n, h, we have V̂ nh is in the form of Eq. 0.5, and V̂ nh falls into the following
class:

V = {fw,β,Λ : ‖w‖2 ≤W +
HN

λ
, β ∈ [0, B], σmin(Λ) ≥ λ}. (0.9)

Proof: We just need to show that θ? + (µ̂nh)>V̂ nh+1 has its `2 norm bounded. This is easy to show as we always have
‖V̂ nh+1‖∞ ≤ H as we do truncation at Value Iteration:∥∥∥θ? + (µ̂nh)>V̂ nh+1

∥∥∥
2
≤W +

∥∥∥(µ̂nh)>V̂ nh+1

∥∥∥
2
.

Now we use the closed-form of µ̂nh from Eq. 0.3:∥∥∥(µ̂nh)>V̂ nh+1

∥∥∥
2

=

∥∥∥∥∥
n−1∑
i=1

V̂ nh+1(sih+1)φ(sih, a
i
h)>(Λnh)−1

∥∥∥∥∥
2

≤ H
∥∥∥∥∥(Λnh)−1

n−1∑
i=0

φ(sih, a
i
h)

∥∥∥∥∥
2

≤ Hn

λ
,

where we use the fact that ‖V̂ nh+1‖∞ ≤ H , σmax(Λ−1) ≤ 1/λ, and sups,a ‖φ(s, a)‖2 ≤ 1.
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8.6 Analysis of UCBVI for Linear MDPs

In this section, we prove the following regret bound for UCBVI.

Theorem 8.9 (Regret Bound). Set β = Õ (Hd), λ = 1. UCBVI (Algorithm 6) achieves the following regret bound:

E

[
NV ? −

N∑
i=0

V π
n

]
≤ Õ

(
H2
√
d3N

)

The main steps of the proof are similar to the main steps of UCBVI in tabular MDPs. We first prove optimism
via induction, and then we use optimism to upper bound per-episode regret. Finally we use simulation lemma to
decompose the per-episode regret.

In this section, to make notation simple, we set λ = 1 directly.

8.6.1 Proving Optimism

Proving optimism requires us to first bound model error which we have built in the uniform convergence result shown
in Lemma 8.7, namely, the bound we get for (P̂nh (·|s, a)−P (·|s, a)) · f for all f ∈ V . Recall Lemma 8.7 but this time
replacing F by V defined in Eq. 0.9. With probability at least 1− δ, for all n, h, s, a and for all f ∈ V ,

∣∣∣(P̂nh (·|s, a)− P (·|s, a)) · f
∣∣∣ ≤ H ‖φ(s, a)‖(Λnh)−1

(√
ln
H

δ
+

√
d ln(1 + 6(W +HN)

√
N) + d

√
ln(1 + 18B2

√
dN)

)

. Hd ‖φ(s, a)‖(Λnh)−1

(√
ln
H

δ
+
√

ln(WN +HN2) +
√

ln(B2dN)

)

. ‖φ(s, a)‖(Λnh)−1 Hd

(√
ln
H

δ
+
√

ln(W +H) +
√

lnB +
√

ln d+
√

lnN

)
︸ ︷︷ ︸

:=β

.

Denote the above inequality as event Emodel. Below we are going to condition on Emodel being hold. Note that here
for notation simplicity, we denote

β = Hd

(√
ln
H

δ
+
√

ln(W +H) +
√

lnB +
√

ln d+
√

lnN

)
= Õ (Hd) .

remark Note that in the definition of V (Eq. 0.9), we have β ∈ [0, B]. And in the above formulation of β, note
that B appears inside a log term. So we need to set B such that β ≤ B and we can get the correct B by solving the
inequality β ≤ B for B.

Lemma 8.10 (Optimism). Assume event Emodel is true. for all n and h,

V̂ nh (s) ≥ V ?h (s),∀s.
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Proof: We consider a fixed episode n. We prove via induction. Assume that V̂ nh+1(s) ≥ V ?h+1(s) for all s. For time
step h, we have:

Q̂nh(s, a)−Q?h(s, a)

= θ? · φ(s, a) + β
√
φ(s, a)>(Λnh)−1φ(s, a) + φ(s, a)>(µ̂nh)>V̂ nh+1 − θ? · φ(s, a)− φ(s, a)>(µ?h)>V ?h+1

≥ β
√
φ(s, a)>(Λnh)−1φ(s, a) + φ(s, a)> (µ̂nh − µ?h)

>
V̂ nh+1,

where in the last inequality we use the inductive hypothesis that V̂ nh+1(s) ≥ V ?h+1(s), and µ?hφ(s, a) is a valid distri-
bution (note that µ̂nhφ(s, a) is not necessarily a valid distribution). We need to show that the bonus is big enough to
offset the model error φ(s, a)> (µ̂nh − µ?h)

>
V̂ nh+1. Since we have event Emodel being true, we have that:∣∣∣(P̂nh (·|s, a)− P (·|s, a)) · V̂ nh+1

∣∣∣ . β‖φ(s, a)‖(Λnh)−1 ,

as by the construction of V , we know that V̂ nh+1 ∈ V .

This concludes the proof.

8.6.2 Regret Decomposition

Now we can upper bound the per-episode regret as follows:

V ? − V πn ≤ V̂ n0 (s0)− V πn0 (s0).

We can further bound the RHS of the above inequality using simulation lemma. Recall Eq. 0.4 that we derived in the
note for tabular MDP (Chapter 7:

V̂ n0 (s0)− V πn0 (s0) ≤
H−1∑
h=0

Es,a∼dπnh
[
bnh(s, a) +

(
P̂nh (·|s, a)− P (·|s, a)

)
· V̂ nh+1

]
.

(recall that the simulation lemma holds for any MDPs—it’s not specialized to tabular).

In the event Emodel, we already know that for any s, a, h, n, we have
(
P̂nh (·|s, a)− P (·|s, a)

)
·V̂ nh+1 . β‖φ(s, a)‖(Λnh)−1 =

bnh(s, a). Hence, under Emodel, we have:

V̂ n0 (s0)− V πn0 (s0) ≤
H−1∑
h=0

Es,a∼dπnh [2bnh(s, a)] .
H−1∑
h=0

Es,a∼dπnh [bnh(s, a)] .

Sum over all episodes, we have the following statement.

Lemma 8.11 (Regret Bound). Assume the event Emodel holds. We have:

N−1∑
n=0

(V ?0 (s0)− V πn0 (s0)) ≤
N−1∑
n=0

H−1∑
h=0

Esnh ,anh∼dπnh [bnh(snh, a
n
h)]
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8.6.3 Concluding the Final Regret Bound

We first consider the following elliptical potential argument, which is similar to what we have seen in the linear bandit
lecture.

Lemma 8.12 (Elliptical Potential). Consider an arbitrary sequence of state action pairs sih, a
i
h. Assume sups,a ‖φ(s, a)‖2 ≤

1. Denote Λnh = I +
∑n−1
i=0 φ(sih, a

i
h)φ(sih, a

i
h)>. We have:

N−1∑
i=0

φ(sih, a
i
h)(Λih)−1φ(sih, a

i
h) ≤ 2 ln

(
det(ΛN+1

h )

det(I)

)
. 2d ln(N).

Proof: By the Lemma 3.7 and 3.8 in the linear bandit lecture note,

N∑
i=1

φ(sih, a
i
h)(Λih)−1φ(sih, a

i
h) ≤ 2

N∑
i=1

ln(1 + φ(sih, a
i
h)(Λih)−1φ(sih, a

i
h))

≤ 2 ln

(
det(ΛN+1

h )

det(I)

)

≤ 2d ln(1 +
N + 1

dλ
) . 2d ln(N).

where the first inequality uses that for 0 ≤ y ≤ 1, ln(1 + y) ≥ y/2.

Now we use Lemma 8.11 together with the above inequality to conclude the proof.

Proof:[Proof of main Theorem 8.9]

We split the expected regret based on the event Emodel.

E

[
NV ? −

N∑
n=1

V πn

]
= E

[
1{Emodel holds}

(
NV ? −

N∑
n=1

V πn

)]

+ E

[
1{Emodel doesn’t hold}

(
NV ? −

N∑
n=1

V πn

)]

≤ E

[
1{Emodel holds}

(
NV ? −

N∑
n=1

V πn

)]
+ δNH

. E

[
N∑
n=1

H−1∑
h=0

bnh(snh, a
n
h)

]
+ δNH.

Note that:
N∑
n=1

H−1∑
h=0

bnh(snh, a
n
h) = β

N∑
n=1

H−1∑
h=0

√
φ(snh, a

n
h)>(Λnh)−1φ(snh, a

n
h)

= β

H−1∑
h=0

N∑
n=1

√
φ(snh, a

n
h)>(Λnh)−1φ(snh, a

n
h)

≤ β
H−1∑
h=0

√√√√N

N∑
n=1

φ(snh, a
n
h)(Λnh)−1φ(snh, a

n
h) . βH

√
Nd ln(N).

Recall that β = Õ(Hd). This concludes the proof.
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8.7 Bibliographic Remarks and Further Readings

There are number of ways to linearly parameterize an MDP such that it permits for efficient reinforcement learning
(both statistically and computationally). The first observation that such assumptions lead to statistically efficient
algorithms was due to [Jiang et al., 2017] due to that these models have low Bellman rank (as we shall see in Chapter 9).
The first statistically and computationally efficient algorithm for a linearly parameterized MDP model was due to
[Yang and Wang, 2019a,b]. Subsequently, [Jin et al., 2020] provided a computationally and statistically efficient
algorithm for simplified version of this model, which is the model we consider here. The model of [Modi et al., 2020b,
Jia et al., 2020, Ayoub et al., 2020b, Zhou et al., 2020] provides another linearly parameterized model, which can
viewed as parameterizing P (s′|s, a) as a linear combination of feature functions φ(s, a, s′). One notable aspect of the
model we choose to present here, where Ph(·|s, a) = µ?hφ(s, a), is that this model has a number of free parameters
that is |S| · d (note that µ is unknown and is of size |S| · d), and yet the statistical complexity does not depend on
|S|. Notably, this implies that accurate model estimation request O(|S|) samples, while the regret for reinforcement
learning is only polynomial in d. The linearly parameterized models of [Modi et al., 2020b, Jia et al., 2020, Ayoub
et al., 2020b, Zhou et al., 2020] are parameterized by O(d) parameters, and, while O(d) free parameters suggests
lower model capacity (where accurate model based estimation requires only polynomial in d samples), these models
are incomparable to the linearly parameterized models presented in this chapter;

It is worth observing that all of these models permit statistically efficient estimation due to that they have bounded
Bellman rank [Jiang et al., 2017] (and bounded Witness rank [Sun et al., 2019a]), a point which we return to in the
next Chapter.

The specific linear model we consider here was originally introduced by [Jin et al., 2020]. The non-parametric model-
based algorithm we study here was first introduced by [Lykouris et al., 2019] (but under the context of adversarial
attacks).

The analysis we present here does not easily extend to infinite dimensional feature φ (e.g., RBF kernel); here, [Agarwal
et al., 2020a] provide an algorithm and an analysis that extends to infinite dimensional φ, i.e. where we have a
Reproducing Kernel Hilbert Space (RKHS) and the regret is based on the concept of Information Gain.
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Chapter 9

Generalization with
Bounded Bilinear Rank

Our previous lecture on linear bandits and linear MDPs gave examples of statistically efficient reinforcement learning,
where we can obtain a sublinear regret with no dependence on the number of states or actions in the MDP. Obtaining
sample size results which are independent of the size of the state space (and possibly the action space) is essentially a
question of generalization, which is the focus of this chapter. In particular, we now present a more general underlying
assumption which permit sample efficient reinforcement learning in various cases.

Recall our lower bounds from Chapter 5 which suggest that assumptions which would permit sample efficient RL may
be subtle due to that: (i) agnostic RL is not possible and (ii) any assumption which permits sample efficient requires
stronger, and possibly more subtle, conditions than simply assuming Q? is a linear in some known features. This
chapter introduces the Bellman rank condition along with a generalization, the Bilinear rank condition, which permit
sample efficient RL.

This chapter follows the ideas in the original introduction of the Bellman rank [Jiang et al., 2017], along with a
simplified analysis and a generalized concept, the Bilinear class, provided by [Du et al., 2021].

Setting and notation and setting. This chapter focuses on PAC RL (see Section 1.4), where our goal is be to find
a near optimal policy. We work in the episodic setting where we can obtain trajectories under some fixed s0 (see
Section 1.4), and we work in the finite horizon setting. We use the notation a0:h ∼ dπ to denote the sampling of
actions a0 to ah from trajectories under π. We also overload notation where we write sh, ah ∼ dπh for the sampled
state-action pair at timestep h under π, and sh ∼ dπh as the sampled state at time h under π.

9.1 Hypothesis Classes

We assume access to a hypothesis class H = H0 × . . . × HH−1, which can be abstract sets that permit for both
model-based and value-based hypotheses. The only restriction we make is that for all f ∈ H, we have an associated
state-action value functionQh,f and a value function Vh,f . Furthermore, we assume the hypothesis class is constrained
so that Vh,f (s) = maxaQh,f (s, a) for all f ∈ H, h ∈ [H], and s ∈ S , which is always possible as we can
remove hypothesis for which this is not true. We let πh,f be the greedy policy with respect to Qh,f , i.e., πh,f (s) =
argmaxa∈AQh,f (s, a), and πf as the sequence of time-dependent policies {πh,f}H−1

h=0 .
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The following provide some examples of value based and model based hypothesis classes:

• An example of value-based hypothesis class H is an explicit set of state-action value Q and value functions V
i.e.

Hh ⊂ {(Qh, Vh) | Qh is a function from S ×A 7→ R and
Vh is a function from S 7→ R} .

Note that in this case, for any hypothesis f := ((Q0, V0), (Q1, V1), . . . , (QH−1, VH−1)) ∈ H, we can take the
associated Qh,f = Qh and associated Vh,f = Vh.

• Another example of value-based hypothesis classH is whenH is just a set of state-action value Q functions i.e.

Hh ⊂ {Qh | Qh is a function from S ×A 7→ R} .
In this case, for any hypothesis f := (Q0, Q1, . . . , QH−1) ∈ H, we can take the associated Qh,f = Qh and the
associated Vh,f function to be greedy with respect to the Qh,f function i.e. Vh,f (·) = maxa∈AQh,f (·, a).

• An example of model-based hypothesis class is whenHh is a set of transition models and reward functions, i.e.

Hh ⊂ {(Ph, rh) | Ph is a function from S ×A 7→ ∆(S) and
rh is a function from S ×AR} .

In this case, for any hypothesis f := ((P0, r0), (P1, r1), . . . , (PH−1, rH−1)) ∈ H, we can take the associated
Qh,f and Vh,f functions to be the optimal value functions corresponding to the transition models {Ph}H−1

h=0 and
reward functions {rh}H−1

h=0 .

9.2 The Bellman Rank

We now make assumptions on the Bellman residual error. For the “Q-version” of the Bellman rank, we assume that
the Bellman residual error, Q− T Q, has a simple parametric form. In particular,

Definition 9.1 (Q-Bellman Rank). For a given MDP, a hypothesis class H has a Q-Bellman rank of dimension d
if for all h ∈ [H], there exist functions Wh : H → Rd and Xh : H → Rd with supf∈H ‖Wh(f)‖2 ≤ BW and
supf∈H ‖Xh(f)‖2 ≤ BX , such that for all f, g ∈ H

Ea0:h∼dπf
[
Qh,g(sh, ah)− r(sh, ah)− Vh+1,g(sh+1)

]
= 〈Wh(g)−Wh(f?), Xh(f)〉.

Importantly, the functions Wh and Xh need not be known to the learner.

Instead, of assuming this parametric assumption on the Bellman residual error of the state-action value, we consider
a variant which is stated in terms of the values. Note that we can write the Bellman optimality equations (see Equa-
tion 0.7) in terms of the value functions as follows:

Vh(s)−max
a

(
rh(s, a) + Es′∼Ph(·|s,a) [Vh+1(s′)]

)
= 0. (0.1)

This motivates the following definition:

Definition 9.2 (V -Bellman Rank). For a given MDP, a hypothesis class H has a V -Bellman rank of dimension d
if for all h ∈ [H], there exist functions Wh : H → Rd and Xh : H → Rd with supf∈H ‖Wh(f)‖2 ≤ BW and
supf∈H ‖Xh(f)‖2 ≤ BX , such that for all f, g ∈ H:

Ea0:h−1∼dπf ,ah=πg(sh)

[
Vh,g(sh)− r(sh, ah)− Vh+1,g(sh+1)

]
= 〈Wh(g)−Wh(f?), Xh(f)〉.

Note that the action ah is chosen by πg , and recall that for every g, there corresponds a Qh,g , where both Vh,g and πg
are the corresponding greedy value function and policy.
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Let us remark on a few subtle differences in these two definitions, in terms their usage of functions Vh,f vs Qh,f .
Roughly speaking, the former definition corresponds to an assumption on the Bellman residual error of the state-
action value function, while the latter definition corresponds to an assumption on the Bellman residual error of the
value functions. A more subtle distinction is that, for the Q-version, the expectation is with respect to a0:h ∼ πf ,
while for the V -version, the expectation is with respect to a0:h−1 ∼ πf and ah ∼ πg . The use of πg is subtly different
than the expectation being taken directly on the Bellman residual error of Vh,g due to that πg may not correspond to
the true argmax in Equation 0.1. However, as we shall see, we can find estimates of both of the relevant quantities in
the Q and the V versions.

Realizability. We say thatH is realizable for an MDPM if, for all h ∈ [H], there exists a hypothesis f? ∈ H such
that Q?h(s, a) = Qh,f?(s, a), where Q?h is the optimal state-action value at time step h in the ground truth MDPM.
For instance, for the model-based perspective, the realizability assumption is implied if the ground truth transitions
{Ph}H−1

h=0 and reward function {rh}H−1
h=0 belong to our hypothesis classH.

9.3 Examples

9.3.1 Examples that have small Q-Bellman rank

Contextual Linear Bandits

Let us start with the H = 1 case and return to the linear bandit model from Chapter 6. Let us consider a contextual
model where there is a distribution over states s0 ∼ µ and where we assume:

E[r(s, a)] = w? · φ(s, a).

Here, our hypothesis of state-action values isH = {θ>φ(s, a) : ‖θ‖2 ≤W}.
Take two hypothesis f, g where we denote Q0,f (s, a) := θ>φ(s, a), Q0,g(s, a) = w>φ(s, a) (we take h = 0 due to
that H = 1). We have:

E
a∼d

πf
0

[
w>φ(s, a)− r(s, a)

]
= Es∼µ,a=πf (s)

[
(w − w?)>φ(s, a)

]
=
〈
w − w?,Es∼µ,a=πf (s)[φ(s, a)]

〉
.

Namely, we can set W0(g) = w, and X0(f) = Es∼µ,a=πf (s)[φ(s, a)]. Thus, we have the following:

Proposition 9.3. In the contextual linear bandit model, we have thatH, as defined above, has a Q-Bellman rank of d.

Linear Bellman Completion

Let us now consider the linear Bellman completion setting (Definition 3.1). We show that linear Bellman completion
models have Q-Bellman rank equal to d. In this setting, since Q?h(s, a) = (θ?h)>φ(s, a),∀s, a, h, we use linear
functions for our hypothesis class, i.e., Hh = {θ>φ(s, a) : ‖θ‖2 ≤ W, ‖θ>φ(·, ·)‖∞ ≤ H} for some W ∈ R+ where
‖θ?h‖2 ≤W ; as in Section 9.1, the set of values are those that are greedy with respect to these Q functions.

Recall from Definition 3.1, given θ, we use Th(θ) ∈ Rd to represent the linear function resulting from the Bellman
backup, i.e.,

∀s, a : Th(θ)>φ(s, a) = r(s, a) + Es′∼Ph(·|s,a)[max
a′

θ>φ(s′, a′)].
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We further assume feature is normalized, i.e., sups,a ‖φ(s, a)‖2 ≤ 1, and suph,θ∈Hh ‖Th(θ)‖2 ≤ W . Note that this
condition holds in linear MDP with W = 2H

√
d.

Take two hypothesis f, g where we denote Qh,f (s, a) := θ>h φ(s, a), Qh,g(s, a) = w>h φ(s, a),∀h. Then for any time
step h ∈ [0, H − 2], we have:

E
sh,ah∼d

πf
h ,sh+1∼Ph(·|sh,ah)

[
w>h φ(sh, ah)− r(sh, ah)−max

a′
w>h+1φ(sh+1, a

′)
]

= E
sh,ah∼d

πf
h

[
w>h φ(sh, ah)Th(wh+1)>φ(sh, ah)

]
=
〈
wh − Th(wh+1),E

sh,ah∼d
πf
h

[φ(sh, ah)]
〉
.

TakingWh(g) := wh−Th(wh+1) (and note thatWh(f?) = 0 due to the Bellman optimality condition) andXh(f) :=
E
sh,ah∼d

πf
h

[φ(sh, ah)], we have shown the following:

Proposition 9.4. Under the linear Bellman completion assumption, we have that H, as defined above, has a Q-
Bellman rank of d. Further more, we have supg∈H ‖Wh(g)‖2 ≤ BW := 2W , and supf∈H ‖Xh(f)‖2 ≤ BX := 1.

There are a number of natural models which satisfy the Bellman completeness property, including contextual linear
bandits, linear MDPs and Linear Quadratic Regulators (we will cover LQRs in Chapter 16).

Linear Q? and V ?

Let us now suppose that Q?h and V ?h are functions which are in the span of some given features features φ : S ×A 7→
Rd, ψ : S 7→ Rd, i.e. that, for all h ∈ [0, . . . ,H − 1], there exist θ?h ∈ Rd and w?h ∈ Rd, such that for all s, a,
Q?h(s, a) = (θ?h)>φ(s, a) and V ?h (s) = (w?h)>ψ(s).

Our hypothesis class class Hh is defined as Hh = {(θ, w) : ‖θ‖2 ≤ W1, ‖w‖2 ≤ W2, ∀s,maxa θ
>φ(s, a) =

w>ψ(s)}. Take any f, g where we denote Qh,g(s, a) = θ>h φ(s, a), Vh,g(s) = w>h ψ(s), we have that:

E
s,a∼d

πf
h

[
θ>h φ(s, a)− r(s, a)− Es′∼Ph(·|s,a)[w

>
h ψ(s′)]

]
= E

s,a∼d
πf
h

[
θ>h φ(s, a)−Q?h(s, a) + Es′∼Ph(·|s,a)[V

?
h (s′)]− Es′∼Ph(·|s,a)[w

>
h ψ(s′)]

]
= E

s,a∼d
πf
h

[
(θh − θ?h)>φ(s, a) + (wh − w?h)>Es′∼Ph(·|s,a)[ψ(s′)]

]
=

〈[
θh − θ?h
wh − w?h

]
,E

s,a∼d
πf
h

[
φ(s, a)

Es′∼Ph(·|s,a)[ψ(s′)]

]〉
.

Taking Wh(g) :=

[
θh
wh

]
, and Xh(f) :=

[
φ(s, a)

Es′∼Ph(·|s,a)[ψ(s′)]

]
, we have shown that:

Proposition 9.5. Under the above linear Q? and V ? assumption, our hypothesis class H, as defined above, has a
Q-Bellman rank of 2d.

The linear Q? assumption vs. the linear Q?/V ? assumption. As we saw in Chapter 5, simply assuming that Q?

is linear is not sufficient for sample efficient RL. Thus it may seem surprising that assuming both Q? and V ? are linear
(in different features) permits a sample efficient algorithm (as we shall see). However, it is worthwhile to observe how
this is a substantially strong assumption. In particular, note that our hypothesis class must enforce the constraint that
maxa θ

>φ(s, a) = w>ψ(s) for all (θ, w) ∈ H; this eliminates functions from the set of all Q which are linear in φ.
Furthermore, note that this pruning is done without collecting any data.
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Q?-state abstraction

The Q?-state abstraction mode is defined as follows. There exists some abstraction function ξ : S 7→ Z where
|Z| < |S|, such that for all h, we have:

∀s, s′, ξ(s) = ξ(s′)⇒ Q?h(s, a) = Q?h(s′, a),∀a ∈ A, V ?h (s) = V ?h (s′).

We show that this example has low Q-bellman rank by showing that it is a special case of the linear Q? & V ? model.
Specifically, let us define φ : S ×A 7→ R|Z||A| and ψ : S 7→ R|Z| as follows:

φ(s, a)z,a′ = 1{ξ(s) = z, a = a′}, ψ(s)z = 1{ξ(s) = z}.

With this feature setup, we have:

Q?h(s, a) = (w?h)>φ(s, a), where (w?h)z,a = Q?(s, a) with ξ(s) = z,

V ?h (s) = (θ?h)>ψ(s), where (θ?h)z = V ?(s) with ξ(s) = z.

Thus, similar to linear Q?/V ? model above, we can set H such that Hh := {(θ, w) : ‖θ‖2 ≤ W1, ‖w‖2 ≤
W2,∀s,maxs θ

>φ(s, a) = w>ψ(s)}. we demonstrate that this model has Q-Bellman rank at most |Z||A|+ |Z|.

Proposition 9.6. Under the above Q?-state abstraction assumption, our hypothesis classH has a Q-Bellman rank of
|Z||A|+ |Z|.

Low-occupancy measure

An MDP has low (state-action) occupancy measure if the following is true. For all h, there exist two functions
βh : H 7→ Rd, and φh : S ×A 7→ Rd, such that for any f ∈ H, we have:

d
πf
h (s, a) = 〈βh(f), φh(s, a)〉 .

We show that this model has Q-Bellman rank at most d. Consider any f, g and h, we have:

E
s,a∼d

πf
h

[
Qh,g(s)− r(s, a)− Es′∼Ph(·|s,a[Vh+1,g(s

′)]
]

= βh(f)>

(∑
s,a

φh(s, a)
[
Qh,g(s, a)− r(s, a)− Es′∼Ph(·|s,a)[Vh+1,g(s

′)]
])

,

which shows that Wh(g) :=
∑
s,a φh(s, a)

[
Qh,g(s, a)− r(s, a)− Es′∼Ph(·|s,a)[Vh+1,g(s

′)]
]

(note that Wh(f?) = 0
due to the Bellman optimality condition), and Xh(f) := βh(f). Note that in this model we can use any hypothesis
classH as long as it contains f?.

Proposition 9.7. Any hypothesis class H, together with the MDP that has a low-occupancy measure, has Q-Bellman
rank d.

Note that if the state distribution has low-occupancy, i.e.

d
πf
h (s) = βh(f)>φh(s)

for some φh : S 7→ Rd, then it satisfies the V -Bellman rank condition, with rank d. In this latter case, we refer to the
model as having low (state) occupancy measure.
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9.3.2 Examples that have small V -Bellman rank

Contextual Bandit

Contextual bandit is a finite horizon MDP with H = 1 and finite number of actions. The contexts are states s0 ∼ µ.
Here our hypothesis classH = H0 = {f : S ×A 7→ [0, 1]} with r ∈ H. We show that the V -Bellman rank is at most
A. We use the notation V1(s) = 0,∀s (recall that H = 1 again). Consider any function pair f, g ∈ H, note that since
H = 1, the state distribution at h = 0 is independent of the policy πf . Thus we have:

Es∼µ [V0,g(s)− r(s, π0,g(s))] =
∑
a∈A

Es∼µ [1{πg(s) = a} [Q0,g(s, a)− r(s, a)]] .

This means that we can write the Bellman error of g averaged over µ as an inner product between two vectors — an
all one vector, and a vector whose a-th entry is Es∼µ [1{πg(s) = a} [Q0,g(s, a)− r(s, a)]], i.e., we have X0(f) = 1A
where 1A represents a A-dim vector will all one , and W0(g) ∈ RA where the a-th entry of W0(g) is Es∼ν1{πg(s) =
a}[Q0,g(s, a)− r(s, a)]. Note that W0(f?) = 0 where f? is the ground truth reward function here.

Proposition 9.8. The hypothesis classH and the contextual bandit model together has a V -Bellman rank A.

Feature Selection in Low-rank MDPs (Representation Learning)

We consider low-rank MDP where for all h, there exist µ? : S 7→ Rd, φ? : S × A 7→ Rd, such that for all s, s, a′, we
have Ph(s′|s, a) = µ?(s′)>φ?(s, a), r(s, a) = (θ?)>φ?(s, a). We denote Φ ⊂ S ×A 7→ Rd as our feature class such
that φ? ∈ Φ. We assume µ?, φ?, θ? are normalized, i.e., ‖φ?(s, a)‖2 ≤ 1,∀s, a, h, and ‖v>µ?‖2 ≤

√
d, for all v such

that ‖v‖∞ ≤ 1, ‖θ?‖2 ≤
√
d.

We denote the hypothesis class Hh := {w>φ(s, a) : ‖w‖2 ≤ W,φ ∈ Φ} where we can set W = 4H
√
d since we

can verify that for Q?h(s, a), it is linear with respect to φ?, i.e., Q?h(s, a) = (w?h)>φ(s, a) for some w?h with ‖w?h‖2 ≤
2H
√
d. Consider a pair of hypothesis (f, g) where we denote Qh,g := w>h φ, and recall Vh,g(·) = maxaQh,g(·, a),

and πh,g(s) := argmaxaQh,g(s, a).

E
s∼d

πf
h

[
Vh,g(s)− r(s, πh,g(s))− Es′∼Ph(·|s,πh,g(s))[Vh+1,g(s

′)]
]

(0.2)

= E
s̃,ã∼d

πf
h−1

Es∼Ph−1(·|s̃,ã)

[
Vh,g(s)− r(s, πh,g(s))− Es′∼Ph(·|s,πh,g(s))[Vh+1,g(s

′)]
]

= E
s̃,ã∼d

πf
h−1

∫
s

µ?(s)>φ?(s̃, ã)
[
Vh,g(s)− r(s, πh,g(s))− Es′∼Ph(·|s,πh,g(s))[Vh+1,g(s

′)]
]
d(s)

=

〈∫
s

µ?(s)
[
Vh,g(s)− r(s, πh,g(s))− Es′∼Ph(·|s,πh,g(s))[Vh+1,g(s

′)]
]
, Es̃,ã∼dπf [φ?(s̃, ã)]

〉
. (0.3)

Taking Wh(g) :=
∫
s
µ?(s)

[
Vh,g(s)− r(s, πh,g(s))− Es′∼Ph(·|s,πh,g(s))[Vh+1,g(s

′)]
]

(note that Wh(f?) = 0 due to
the Bellman optimality condition) and Xh(f) := E

s̃,ã∼d
πf
h−1

[φ?(s̃, ã)], we have shown that:

Proposition 9.9. The hypothesis class H and the low-rank MDP defined above together has V -Bellman rank d.
Moreover, we have ‖Xh(f)‖2 ≤ BX = 1, and ‖Wh(g)‖2 ≤ BW = 2H

√
d.

Block MDPs. The Block MDP has a small size discrete latent state space Z , an emission distribution v(·; z) ∈
∆(S),∀z, a decoder ξ : S 7→ Z which maps a state s to its corresponding latent state z, and a transition in latent
state space Th(z′|z, a),∀h. To show that Low-rank MDP model captures it, we define φ?(s, a) ∈ {0, 1}|Z||A|, where
φ?(s, a) is a one hot encoding vector which contains zero everywhere, except one in the entry corresponding to the
latent state and action pair (ξ(s), a). The corresponding µ?(s′) ∈ R|Z||A| is defined such that its entry corresponding
to (z, a) is equal to

∑
z′ T (z′|z, a)v(s′; z′). This shows that the Block MDP model is a special case of the Low-rank

MDP model where the rank is the number of unique latent states.
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Feature Selection in Sparse Linear MDP. A sparse linear MDP is a linear MDP where φ? is known (but µ? is un-
known), and there is a subsetK? ∈ [d] with |K?| = s and s < d, such that Ph(s′|s, a) =

∑
i∈K? µ

?
i (s
′)φ?i (s, a), where

we use xi to denote the i-th element of the vector x. We can re-write the transition asPh(s′|s, a) = µ?K?(s′)>φ?K?(s, a),
where we denote xK as the subvector of x that is indexed by elements in K. Thus, this shows that a sparse linear MDP
is a special case of low-rank MDP where the rank is s instead of d

We consider the following hypothesis class. Define a representation class Φ with |Φ| =
(
d
s

)
. Each φ ∈ Φ corresponds

to a s-size subset K ∈ [d]. Given K, we have φ(s, a) ∈ Rs, and φ(s, a) = φ?K?(s, a),∀s, a. By the assumption that
‖φ?(s, a)‖2 ≤ 1, we must have ‖φ(s, a)‖2 ≤ 1 for all s, a, φ ∈ Φ. We defineHh = {w>φ : ‖w‖2 ≤W,w ∈ Rs, φ ∈
Φh, |w>φ(·, ·)| ≤ H}. We set W = 2H

√
d such that Q?h ∈ Hh (note that Q?h is a linear function with respect to φ?K?

due to the fact that the MDP is a linear MDP with respect to feature φ?K? ).

9.4 Bilinear Classes

The Bilinear class model generalizes both the Q-Bellman rank and V -Bellman rank. We define the Bilinear class
model as follows.

Definition 9.10 (Bilinear Class). Consider an MDP and a hypothesis class H, a discrepancy function `f : S × A ×
S × [H] × H (defined for each f ∈ H), and a set of (non-stationary) estimation policy Πest = {πest(f) : f ∈ H}.
We say that {H, `f ,Πest,M} is a Bilinear class of rank d if H is realizable inM, and if there exists Wh : H 7→ Rd
and Xh : H 7→ Rd, such that the following two properties hold for all f ∈ H and h ∈ [H]:

1. We have∣∣∣Es,a∼dπfh ,s′∼Ph(·|s,a)
[Qh,f (s, a)− r(s, a)− Vh+1,f (s′)]

∣∣∣ ≤ |〈Wh(f)−Wh(f?), Xh(f)〉| , (0.4)

2. The policy πest(f) and the discrepancy `f can be used for estimation in the following sense: for any g ∈ H, we
have: ∣∣∣Es∼dπfh ,a∼πest,h(s;f),s′∼Ph(·|s,a)

[`f (s, a, s′, h, g)]
∣∣∣ = |〈Wh(g)−Wh(f?), Xh(f)〉| , (0.5)

We suppress the h dependence on πest,h when clear from context. Typically πest(f) will be either the uniform
distribution over A or πf itself. In the latter case, we refer to the estimation strategy as being on-policy.

The first condition in the above definition assumes that the average Bellman error of f under πf ’s state-action distri-
bution can be upper bounded by the value from the bilinear formulation. The second condition assumes that we have
a discrepancy function that allows us to evaluate the value of the bilinear formulation. Note that the second condition
permits data reuse, i.e., given a set of samples where s ∼ d

πf
h , a ∼ πest,h(s; f), s′ ∼ Ph(·|s, a), we can use the

dataset to evaluate the loss for all g ∈ H simultaneously. This data reuse is the key to generalization. Also the second
condition ensures that for all f , we must have E

s∼d
πf
h ,a∼πest,h(s;f),s′∼Ph(·|s,a)

[`f (s, a, s′, h, f?)] = 0.

9.4.1 Examples

Let now see how the Bilinear classes naturally generalize the Bellman rank.

Q-Bellman rank and V-Bellman rank

It is straightforward to see that the Bilinear class captures the Q-Bellman rank and V -Bellman rank models. To
capture Q-Bellman rank, in Bilinear class, we will set `f := ` for all f , with ` being defined in Eq. 0.6, and set
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πest,h(f) = πf,h,∀f . To capture V -Bellman rank, we will set `f := ` for all f with ` being defined in Eq. 0.7, and
πest(f) := UnifA, i.e., uniform distribution over A. More precisely, we have:

Q-Bellman rank : `(s, a, s′, h, g) := Qh,g(s, a)− r(s, a)− Vh+1,g(s
′), (0.6)

V -Bellman rank : `(s, a, s′, h, g) :=
1{a = πh,g(s)}

1/A
(Qh,g(s, a)− r(s, a)− Vh+1,g(s

′)) . (0.7)

In the V -Bellman rank case, the importance weighting factor 1{a = πh,g(s)}/(1/A) ensures that given any s, g,

Ea∼UnifA,s′∼Ph(·|s,a)`(s, a, s
′, g) = Vh,g(s)− r(s, πh,g(s))− Es′∼Ph(·|s,πh,g(s))Vh+1,g(s

′),

i.e., `(s, a, s′, g) is an unbiased estimate of the V-Bellman error of g at state s, given that a ∼ UnifA, s′ ∼ Ph(·|s, a).

Q-Bellman and V -Bellman rank already assume the existence of two mapps.

Note that by our assumption that ‖Qh,g‖∞ ≤ H , we have ‖`‖∞ ≤ H for the Q-Bellman rank case, and ‖`‖∞ ≤ AH
for the V -Bellman rank case.

Linear mixture model

The additional f -dependent discrepancy function allows Bilinear classes to capture the following linear mixture model,
which cannot be captured by Q or V version of the Bellman rank.

A linear mixture MDP model has a feature φ : S × A × S 7→ Rd, such that Ph(s′|s, a) = (θ?h)>φ(s, a, s′) where we
assume ‖θ?h‖2 ≤W . We assume reward r is known.

Here, our hypothesis classH is a model based one, whereHh = {(Ph, r) : Ph(s′|s, a) := θ>φ(s, a, s′), ‖θ‖2 ≤W}.
We assume that the reward function is known, and the associated Q and V function with any hypothesis is the optimal
state-action value and optimal value for the associated model (as discussed in Section 9.1).

We design the discrepancy function `f as follows. Denote g ∈ H as g = {θ>h ψ(·, ·, ·)}H−1
h=0 ,

`f (s, a, s′, h, g) :=
∑
s̃

θ>h φ(s, a, s̃)Vh+1,f (s̃)− Vh+1,f (s′).

Below we show that it is a Bilinear class model. For any f, g ∈ H, set πest(f) = πf (i.e., on-policy), we have:

E
s,a∼d

πf
h ,s′∼Ph(·|s,a)

`f (s, a, s′, h, g) = E
s,a∼d

πf
h

[∑
s̃

θ>h φ(s, a, s̃)Vh+1,f (s̃)−
∑
s̃

(θ?h)>φ(s, a, s̃)Vh+1,f (s′)

]

= (θh − θ?h)
>

(
E
s,a∼d

πf
h

[∑
s′

φ(s, a, s′)

])
.

Thus we have shown that Wh(g) = θh, and Xh(f) = E
s,a∼d

πf
h

[
∑
s′ φ(s, a, s′)].

Proposition 9.11. The hypothesis classH together with the linear mixture model is a Bilinear class.

9.5 PAC-RL with Bounded Bilinear Rank

We now focus on the sample complexity of finding an ε-near optimal policy. We work in the episodic setting where
we can obtain trajectories under some fixed initial state s0 (i.e., µ := δ(s0)). Note that generalizing to any distribution
µ is straightforward.

104



9.5.1 Algorithm

Algorithm 7 BLin-UCB
1: Input: number of iteration T , batch size m, confidence radius R, estimation policy πest, loss `
2: for t = 0 . . . T − 1 do
3: Set ft as the solution of the following program:

ft = argmaxg∈H V0,g(s0),

t−1∑
i=0

(
EDi,h`fi(s, a, s′, g)

)2 ≤ R2,∀h ∈ [0, . . . ,H − 1]

4: ∀h, create batch data Dt,h = {si, ai, (s′)i}mi=1,
where si ∼ dπfth , ai ∼ πest,h(si; ft), (s

i)′ ∼ Ph(·|si, ai) (see text for discussion).
5: end for
6: return arg maxπ∈{πf0 ,...,πfT−1

} V
π .

We present the Bilinear-UCB algorithm in Algorithm 7. Algorithm 7 uses the estimation policy πest,h(·; ft) to generate
action at when collecting the batch Dt,h at iteration t for time step h.

Note that the samples required by Bilinear-UCB algorithm can be obtained in episodic sampling model. We simply
follow π until time step h, and then use πest(·; ft) to sample the action at the timestep.

While the algorithm returns the best policy found up to time T , i.e. maxt∈[T ] V
πft , it is also straight forward to replace

this step using a sample based estimate of the best policy seen so far (with a negligible increase in the sample size).

Intuitively, BLin-UCB uses optimism for exploration. Our constraints are designed such that they eliminate functions
that are not f?. Also the threshold R will be set such that f? is always a feasible solution with high probability. Thus,
the argmax procedure in the objective function ensures that it returns an optimistic estimate, i.e., V0,ft(s0) ≥ V ?0 (s0).

9.5.2 Sample Complexity

We begin by stating the following assumption about the uniform convergence property of our hypothesis classH.

Assumption 9.12 (Uniform Convergence). We assume that there exists a function εgen(m,H, δ) such that for any
distribution ν ∈ ∆(S ×A×S) and f ∈ H, and any δ ∈ (0, 1), with probability at least 1− δ over the m i.i.d samples
D := {si, ai, s′i}mi=1 ∼ ν, we have:

sup
g∈H
|ED[`f (s, a, s′, h, g)]− Eν [`f (s, a, s′, h, g)]| ≤ εgen(m,H, δ).

The above assumption is the standard uniform convergence result and typically we have εgen(m,H, δ)→ 0,m→∞.
Below we give three examples, one for finite hypothesis class H, one for infinite hypothesis class under the linear
Bellman completion setting, and one for the infinite hypothesis class under the problem of feature selection in sparse
linear MDPs.

Example 9.13 ( Finite hypothesis class case). Let us consider the example where H is a discrete hypothesis class. In
this case, forQ-Bellman rank loss, via Hoeffding’s inequality and a union bound overH, we have that with probability
at least 1− δ,

sup
g∈H

∣∣ED[`f (s, a, s′, h, g)]− Eν [`f (s, a, s′, h, g)]
∣∣ ≤ 2H

√
ln(|H|/δ)/m,
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which means we can set
εgen(m,H, δ) := 2H

√
ln(|H|/δ)/m.

For V -Bellman rank loss, due to the importance weighting, we have an additional A term, i.e., with probability at least
1− δ,

sup
g∈H

∣∣ED[`f (s, a, s′, h, g)]− Eν [`f (s, a, s′, h, g)]
∣∣ ≤ 2HA

√
ln(|H|/δ)/m.

Example 9.14 (Linear Bellman completion). In the linear Bellman completion model, our hypothesis class Hh =
{w>φ(s, a) : ‖w‖2 ≤ W, ‖w>φ(·, ·)‖∞ ≤ H} is not discrete. However, with the loss function associated with Q-
Bellman rank, via a standard uniform convergence analysis using ε-net for linear functions inH, we can show (details
in Lemma A.12):

sup
g∈H

∣∣ED[`f (s, a, s′, h, g)]− Eν [`f (s, a, s′, h, g)]
∣∣ ≤ 3H

√
(2d ln(1 + 4Wm) + ln(1/δ))/m.

Thus, we have

εgen(m,H, δ) := 3H

√
2d ln(1 + 4Wm) + ln(1/δ)

m
.

Example 9.15 (Feature selection for sparse linear MDP). To give another example of infinite hypothesis class case, we
consider the following H with Hh = {w>φ : ‖w‖2 ≤ 2H

√
d,w ∈ Rs, φ ∈ Φh, ‖w>φ‖∞ ≤ H} from the example

of feature selection in sparse linear MDP. Recall Φ is discrete and |Φ| =
(
d
s

)
. We focus on the loss function associated

with V -Bellman rank. DenoteHh,φ = {w>φ : ‖w‖2 ≤ 2H
√
d,w ∈ Rs, ‖w>φ‖∞ ≤ H} for a φ ∈ Φ. Via a standard

uniform convergence analysis using ε-net for linear functions inHh,φ, we can show (details in Lemma A.12):

P

(
sup
g∈Hφ

∣∣ED[`f (s, a, s′, h, g)]− Eν [`f (s, a, s′, h, g)]
∣∣ ≥ 3HA

√
(2s ln(1 + 8AH

√
dm) + ln(1/δ))/m

)
≤ 1− δ.

Applying a union bound over all φ ∈ Φ and use the fact that |Φ| ≤ sd, we have:

sup
g∈H

∣∣ED[`f (s, a, s′, h, g)]− Eν [`f (s, a, s′, h, g)]
∣∣ ≤ 3HA

√
(2s ln(1 + 8AH

√
dm) + s ln(d/δ))/m,

with probability at least 1− δ. Thus we have

εgen(m,H, δ) := 3HA

√
2s ln(1 + 8AH

√
dm) + s ln(d/δ)

m
.

Note the polynomial dependence on s and the poly-log dependence on d.

With the above assumption, now we are ready to state the main theorem.

Theorem 9.16 (PAC RL for BLin-UCB). Fix δ ∈ (0, 1), batch size m ∈ N+. Suppose our hypothesis class H forms
a Bilinear class of rank d; that the class is realizable; and that the Bilinear-UCB algorithm has access to bothH and
the associated discrepancy function `. Set the parameters as follows:

T =

⌈
2Hd ln

(
4Hd

(
B2
XB

2
W

ε2
gen(m,H, δ/(TH))

+ 1

))⌉
, R =

√
Tεgen(m,H, δ/(TH)).

Let π be the policy returned by the Bilinear-UCB algorithm (Algorithm 7). With probability at least 1− δ, we have:

V ?0 (s0)− V π0 (s0) ≤ 5εgen

√
dH3 ln

(
4Hd

(
B2
XB

2
W

ε2
gen

+ 1

))
.

Note the total number of samples obtained is mTH .

Before proving the main theorem, we revisit the three examples above, i.e., finite hypothesis case, linear Bellman
completion, and feature selection in sparse linear MDP, and derive the sample complexity bounds for these examples.
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Finite hypothesis class case (Example 9.13 continued). Plugging in specific forms of εgen(m,H, δ/(TH)) in the
above general theorem allows us to instantiate PAC bounds. Consider the Q-Bellman rank example with a discrete
hypothesis classH. In this case, as we show above, we have εgen(m,H, δ) := 2H

√
ln(|H|/δ)/m. To have V ?0 (s0)−

maxi∈[0,...,T−1] V
πfi
0 (s0) ≤ ε for some ε ∈ (0, H), we just need to set m such that:

12H

√
ln(|H|/δ)

m

√
dH3 ln

(
4Hd

(
B2
XB

2
Wm

4H2 ln(|H|/δ) + 1

))
≤ ε,

Using the inequality from Equation 0.9, it is suffice to set m as:

m =
cdH5 ln(|H|/δ)

ε2
· ν, where ν := ln

(
dH5

ε2
(
HdB2

XB
2
W + 4Hd ln(|H|/δ)

))
,

and c is an absolute constant. Using the fact that T =
⌈
2Hd ln

(
4Hd

(
B2
XB

2
W

ε2gen(m,H,δ/(TH)) + 1
))⌉

, we can reach the
following corollary.

Corollary 9.17 (PAC bound for finite hypothesis H under Q-Bellman rank). Fix ε, δ ∈ (0, 1). With probability at
least 1− δ, BLin-UCB learns a policy π such that V ?0 (s0)− V π0 (s0) ≤ ε, using at most

cH6d2 ln(|H|/δ)
ε2

· ln
(

4Hd

(
B2
XB

2
W dH

3ν

ε2
+ 1

))
· ν

many trajectories.

Linear Bellman completion (Example 9.14, continued). Plugging in the specific form of εgen(m,H, δ/(TH))
and BX = 1 and BW = W , with some linear algebra, we get:(

5εgen

√
dH3 ln

(
4Hd

(
B2
XB

2
W

ε2
gen

+ 1

)))2

≤ cH
5d2

m
ln2

(
H3d3W 4m

δ

)
,

for some absolute constant c. Thus, to have V ?0 (s0)−maxi∈[0,...,T−1] V
πfi
0 (s0) ≤ ε for some ε ∈ (0, H), it is suffice

to set m such that:

c
H5d2

m
ln2

(
H3d3W 4m

δ

)
≤ ε2.

Using the fact that for any positive scalars a, b, m = 9a ln2(9ab) is a solution to the inequality m ≥ a ln2(bm), we
can set m as:

m :=
c′H5d2

ε2
· ν, where ν := ln2

(
H8d5W 4

ε2δ

)
.

Also plugging in εgen(m,H, δ/(HT )) into T , we get:

T ≤ c′′Hd ln
(
Hd+H6d3W 2ν/ε2

)
Thus, the total number of trajectories used can be upper bounded as mT . This leads to the following corollary.

Corollary 9.18 (PAC bound for linear Bellman completion). Fix ε, δ ∈ (0, 1). With probability at least 1− δ, for the
linear Bellman completion model, BLin-UCB finds a policy π such that V ?0 (s0)− V π0 (s0) ≤ ε, using at most

c̃H6d3

ε2
· ν′,

where c̃ is an absolute constant, and ν′ only contains log terms:

ν′ := ln2

(
H8d5W 4

ε2δ

)
ln

(
Hd+

H6d3W 2

ε2
ln2

(
H8d5W 4

ε2δ

))
.
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Feature Selection in Sparse linear MDP (Example 9.15, continued). Plugging in the specific form of εgen(m,H, δ/(TH))

and the fact that BX = 1 and BW = 2H
√
d, with some linear algebra, we get:(

5εgen

√
dH3 ln

(
4Hd

(
B2
XB

2
W

ε2
gen

+ 1

)))2

≤ cH
5A2s2

m
ln2

(
AH3d2m

δ

)
,

for some absolute constant c. Thus, to have V ?0 (s0)−maxi∈[0,...,T−1] V
πfi
0 (s0) ≤ ε for some ε ∈ (0, H), it is suffice

to set m such that:

c
H5A2s2

m
ln2

(
AH3d2m

δ

)
≤ ε2.

Using the fact that for any positive scalars a, b, m = 9a ln2(9ab) is a solution to the inequality m ≥ a ln2(bm), we
can set m as:

m =
c′H5A2s2

ε2
· ν, where ν := ln2

(
H8A3s2d2

ε2δ

)
.

Also plugging in εgen(m,H, δ/(HT )) into T , we get:

T = c′′Hs ln
(
4Hs+ 4H8A2s2d2ν/ε2

)
Note the total number of trajectories used here is mT . This leads to the following corollary.

Corollary 9.19 (PAC bound for feature selection in sparse linear MDP). Fix δ, ε ∈ (0, 1). With probability at least
1 − δ, for the sparse linear MDP model, BLin-UCB finds a policy π such that V ?0 (s0) − V π0 (s0) ≤ ε, using total
number of trajectories at most

c̃H6A2s3

ε2
· ν′,

with c̃ being an absolute constant, and ν′ only containing log terms:

ν′ := ln2

(
H8A3s2d2

ε2δ

)
ln

(
4Hs+

4H8A2s2d2

ε2
ln2

(
H8A3s2d2

ε2δ

))
.

Note the polynomial dependence on s instead of d (d only appears inside log-terms) in the above PAC bound, which
indicates that BLin-UCB leverages the sparsity.

9.5.3 Analysis

For notational convenience, let us overload notation and write εgen := εgen(m,H, δ/TH).

Lemma 9.20. For all h ∈ [0, . . . ,H − 1] and t ∈ [0, . . . , T − 1], with probability at least 1− δ, we have:

sup
g∈H

∣∣∣EDt,h [`ft(s, a, s
′, g)]− E

s∼d
πft
h ,a∼πest(s),s′∼Ph(·|s,a)

[`ft(s, a, s
′, g)]

∣∣∣ ≤ εgen.
Proof: Note that the (s, a, s′) triple fromDi,h is sampled as s ∼ dπfth , a ∼ πest(s), s′ ∼ Ph(·|s, a), in an i.i.d fashion.
Thus, using assumption 9.12 and a union bound over all h and t concludes the proof.

Our next lemma is with regards to feasibility and optimism; we show that with high probability, f? is always a feasible
solution of our constrained optimization program, which implies the optimism property holds.
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Lemma 9.21 (Optimism and Feasibility of f?). Assume the event in Lemma 9.20 holds and that R :=
√
Tεgen.

We have that for all t ∈ [T ], f? is a feasible solution of the constrained program in Alg. 7. Furthermore, we have
V0,ft(s0) ≥ V ?0 (s0), for all t ∈ [T ].

Proof: Based on the second condition in the Bilinear class (Eq. 0.5), we have that for f?:

|E
s∼d

πft
h ,a∼πest(s),s′∼Ph(·|s,a)

[`ft(s, a, s
′, f?)] | = |〈Wh(f?)−Wh(f?), Xh(ft)〉| = 0,∀t.

This and our assumption that the event in Lemma 9.20 holds imply that:∣∣EDt,h [`ft(s, a, s
′, f?)]

∣∣ =
∣∣EDt,h [`ft(s, a, s

′, f?)]− E
s∼d

πft
h ,a∼πest(s),s′∼Ph(·|s,a)

[`ft(s, a, s
′, f?)]

∣∣
≤ sup
g∈H

∣∣∣EDt,h [`ft(s, a, s
′, g)]− E

s∼d
πft
h ,a∼πest(s),s′∼Ph(·|s,a)

[`ft(s, a, s
′, g)]

∣∣∣
≤ εgen

This implies
∑t−1
i=0

(
EDi,h`fi(s, a, s′, f?)

)2 ≤ Tε2
gen, which completes the proof of the first claim.

For the second claim, the feasibility of f? and the fact that ft is the maximizer of the constrained program immediately
implies the lemma.

Now we are ready to bound the per-episode regret.

Lemma 9.22. Assume the event in Lemma 9.20 holds. For all t ∈ [0, . . . , T − 1], we have:

V ?0 (s0)− V πft0 (s0) ≤
H−1∑
h=0

|〈Wh(ft)−Wh(f?), Xh(ft)〉| .

Proof: We upper bound the regret as follows. Using optimism, we have

V ?0 (s0)− V πft0 (s0) ≤ V0,ft(s0)− Es0∼µ[V
πft
0 (s0)]

= Q0,ft(s0, a0)− E

[
H−1∑
h=0

r(sh, ah)|πft

]

= E

[
H−1∑
h=0

Qh,ft(sh, ah)− r(sh, ah) +Qh+1,ft(sh+1, ah+1)|πft

]

≤
H−1∑
h=0

∣∣∣E
sh,ah∼d

πft
h

[
Qh,ft(sh, ah)− r(sh, ah)− Esh+1∼Ph(·|s,a) [Vh+1,ft(sh+1)]

]∣∣∣
≤
H−1∑
h=0

|〈Wh(ft)−Wh(f?), Xh(ft)〉| ,

where the first equality uses that a0 = π0,ft(s0), and the fact that π0,ft(s) = argmaxaQ0,ft(s, a), the second equality
uses telescoping with the definitionQH,f0(s, a) = 0 for all s, a, and the last equality uses the first condition in Bilinear
class (Eq. 0.4)

We are now ready to prove the main theorem. The proof uses the same elliptical potential argument from Chapter 6.

Proof:[Proof of Theorem 9.16] Define Σt,h := λI +
∑t−1
τ=0Xh(fτ )X>h (fτ ) (we will set λ later). First let us show

that there exists an iteration t, such that for all h ∈ [H],

‖Xh(ft)‖2Σ−1
t,h

≤ exp

(
Hd

T
ln

(
1 +

TB2
X

dλ

))
− 1, ‖Wh(ft)−Wh(f?)‖2Σt,h ≤ 4λB2

W + 4Tε2
gen. (0.8)
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We now prove the first claim above. Using Lemma 6.11 (from our linear bandit analysis),

T−1∑
t=0

ln
(

1 + ‖Xh(ft)‖2Σ−1
t,h

)
≤ ln

det(ΣT,h)

det(λI)
≤ d ln

(
1 +

TB2
X

dλ

)
,

which holds for all h. After multiplying by 1/T and summing over h, leads to:

1

T

T−1∑
t=0

H−1∑
h=0

ln
(

1 + ‖Xh(ft)‖2Σ−1
t,h

)
≤ Hd

T
ln

(
1 +

TB2
X

dλ

)
.

By the intermediate value theorem, there exists a t such that
∑H−1
h=0 ln

(
1 + ‖Xh(ft)‖2Σ−1

t,h

)
≤ Hd

T ln
(
1 + TB2

X/(dλ)
)
.

This further implies that for any h in this iteration t, we have ln

(
1 + ‖Xh(ft)‖2Σ−1

t,h

)
≤ Hd

T ln
(
1 + TB2

X/(dλ)
)
. Re-

arranging terms proves the first claim.

Now let us prove our claim on the second term. Using the definition of πest(s) and that ft is a feasible solution, we
have that
t−1∑
i=0

(
E
s∼d

πfi
h ,a∼πest(s),s′∼Ph(·|s,a)

[`fi(s, a, s
′, ft)]

)2

≤ 2

t−1∑
i=0

(
EDi,h [`fi(s, a, s

′, ft)]
)2

+ 2

t−1∑
i=0

(
E
s∼d

πft
h ,a∼πest(s),s′∼Ph(·|s,a)

[`fi(s, a, s
′, ft)]− EDi,h [`fi(s, a, s

′, ft)]
)2

≤ 2Tε2
gen + 2Tε2

gen = 4Tε2
gen,

Using this and the second condition in the definition of Bilinear class (Eq. 0.5), we have:

‖Wh(ft)−Wh(f?)‖2Σt,h =

t−1∑
i=0

(
(Wh(ft)−Wh(f?))>Xh(fi)

)2
+ λ‖Wh(ft)−Wh(f?)‖22

=

t−1∑
i=0

(
E
s∼d

πfi
h ,a∼πest(s),s′∼Ph(·|s,a)

[`fi(s, a, s
′, ft)]

)2

+ λ‖Wh(ft)−Wh(f?)‖22 ≤ 4Tε2
gen + 4λB2

W ,

which proves our claimed bound on the second term.

Now consider the iteration t where Eqs. 0.8 hold. Using Lemma 9.22, we have:

V ?0 (s0)− V πft0 (s0) ≤
H−1∑
h=0

∣∣(Wh(ft)−Wh(f?))>Xh(ft)
∣∣

≤
H−1∑
h=0

‖Wh(ft)−Wh(f?)‖Σt,h‖Xh(ft)‖Σ−1
t,h

≤ H
√

4λB2
W + 4Tε2

gen

√
exp

(
Hd

T
ln(1 +

TB2
X

dλ
)

)
− 1

Now let us set 1/λ = B2
W /ε

2
gen + 1/B2

X . Using this setting of λ and that T =
⌈
2Hd ln

(
4Hd

(
B2
XB

2
W

ε2gen
+ 1
))⌉

,

Hd

T
ln

(
1 +

TB2
X

dλ

)
≤ Hd

T
ln

(
1 +

T

d
·
(
B2
XB

2
W

ε2
gen

+ 1

))
≤ Hd

T
ln

(
2T

(
B2
XB

2
W

ε2
gen

+ 1

))
≤ 1,

where the last step follows since we can show that, for any positive a, b,

If T = 2a ln(2ab) then a ln(bT )/T ≤ 1. (0.9)
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This implies that:

V ?0 (s0)− V πft0 (s0) ≤ H
√

2
(
4λB2

W + 4Tε2
gen

)
≤ H

√
8ε2
gen + 16ε2

genHd ln

(
4Hd

(
B2
XB

2
W

ε2
gen

+ 1

))

≤ 5εgen

√
dH3 ln

(
4Hd

(
B2
XB

2
W

ε2
gen

+ 1

))
.

where the second inequality uses that λ ≤ ε2
gen/B

2
W , due to our choice of λ. This concludes the proof.

9.6 The Eluder Dimension

To be added...

9.7 Bibliographic Remarks and Further Readings

The Bellman rank was originally proposed by [Jiang et al., 2017]; this original version was the V -version presented
here. Both [Du et al., 2021, Jin et al., 2021] noted that there are two natural versions of the Bellman rank, which we
refer to as the the Q and V versions. While we focus on PAC RL (i.e. finding a good policy), the work in [Dong et al.,
2020] showed how to a obtain O(

√
T ) regret bound for the case of the V -Bellman rank assumption; this algorithm

utilized a careful sampling procedure (along with an “elimination-based” algorithm); the challenge here is that, for
the V version, we do not have an “on-policy” estimation procedure, unlike for the Q version. With regards to regret
bounds for the Q-version, a more direct algorithm is possible which obtains a O(

√
T ) regret; this regret bound for the

Q-version was provided by [Jin et al., 2021], which essentially follows along similar lines as the original argument
provided in [Zanette et al., 2020] ([Zanette et al., 2020] provided a O(

√
T ) regret for the linear Bellman completion

case).

The bilinear class approach was proposed in [Du et al., 2021]. The algorithm and proof is inspired by [Jiang et al.,
2017], though it provides a more simplified analysis to obtain PAC RL bounds, using a more direct elliptical function
argument (which this chapter follows).

Another generalization is provided by the Eluder dimension. The Eluder dimension was first proposed in [Russo and
Van Roy, 2013] in a bandit setting. It was extended to RL in [Osband and Roy, 2014, Wang et al., 2020b, Ayoub et al.,
2020a, Jin et al., 2021]. The Bellman eluder dimension and bounded bilinear rank are two different concepts. We
focus on the latter one here due to that it captures nearly all the now standard parametric models which permit efficient
RL, and it is relatively straightforward to verify. The Bellman eluder dimension can be thought of as specifying a
more relaxed condition for when the algorithm terminates. Du et al. [2021] also shows that the Bilinear class can also
capture Witness rank [Sun et al., 2019a] thus capturing examples such as Factored MDPs [Kearns and Koller, 1999],
where Bellman rank and Bellman Eluder dimension [Jin et al., 2021] could be exponentially larger than the bilinear
rank.

We also add a few remarks on further readings for important special cases. The problem of feature selection in low-
rank MDP was first studied in [Jiang et al., 2017], and [Agarwal et al., 2020b, Uehara et al., 2021] later introduced
two oracle-efficient model-based algorithms, and [Modi et al., 2021] introduces a model-free algorithm. The sparse
linear MDP model was proposed in [Hao et al., 2021] though the algorithm from [Hao et al., 2021] does not perform
strategic exploration. The linear mixture model was introduced and studied in [Modi et al., 2020a, Ayoub et al., 2020a,
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Zhou et al., 2021b,a]. The linear Q? and V ? model and the low-occupancy model were first introduced by Du et al.
[2021].
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Chapter 10

Deterministic MDPs with Linearly
Parameterized Q?

To be added
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Part 3

Policy Optimization
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Chapter 11

Policy Gradient Methods and Non-Convex
Optimization

For a distribution ρ over states, define:
V π(ρ) := Es0∼ρ[V π(s0)] ,

where we slightly overload notation. Consider a class of parametric policies {πθ|θ ∈ Θ ⊂ Rd}. The optimization
problem of interest is:

max
θ∈Θ

V πθ (ρ) .

We drop the MDP subscript in this chapter.

One immediate issue is that if the policy class {πθ} consists of deterministic policies then πθ will, in general, not be
differentiable. This motivates us to consider policy classes that are stochastic, which permit differentiability.

Example 11.1 (Softmax policies). It is instructive to explicitly consider a “tabular” policy representation, given by
the softmax policy:

πθ(a|s) =
exp(θs,a)∑
a′ exp(θs,a′)

, (0.1)

where the parameter space is Θ = R|S||A|. Note that (the closure of) the set of softmax policies contains all stationary
and deterministic policies.

Example 11.2 (Log-linear policies). For any state, action pair s, a, suppose we have a feature mapping φs,a ∈ Rd.
Let us consider the policy class

πθ(a|s) =
exp(θ · φs,a)∑

a′∈A exp(θ · φs,a′)

with θ ∈ Rd.

Example 11.3 (Neural softmax policies). Here we may be interested in working with the policy class

πθ(a|s) =
exp

(
fθ(s, a)

)∑
a′∈A exp

(
fθ(s, a′)

)
where the scalar function fθ(s, a) may be parameterized by a neural network, with θ ∈ Rd.
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11.1 Policy Gradient Expressions and the Likelihood Ratio Method

Let τ denote a trajectory, whose unconditional distribution Prπµ(τ) under π with starting distribution µ, is

Prπµ(τ) = µ(s0)π(a0|s0)P (s1|s0, a0)π(a1|s1) · · · . (0.2)

We drop the µ subscript when it is clear from context.

It is convenient to define the discounted total reward of a trajectory as:

R(τ) :=

∞∑
t=0

γtr(st, at)

where st, at are the state-action pairs in τ . Observe that:

V πθ (µ) = Eτ∼Pr
πθ
µ

[R(τ)] .

Theorem 11.4. (Policy gradients) The following are expressions for∇θV πθ (µ):

• REINFORCE:

∇V πθ (µ) = Eτ∼Pr
πθ
µ

[
R(τ)

∞∑
t=0

∇ log πθ(at|st)
]

• Action value expression:

∇V πθ (µ) = Eτ∼Pr
πθ
µ

[ ∞∑
t=0

γtQπθ (st, at)∇ log πθ(at|st)
]

=
1

1− γEs∼d
πθEa∼πθ(·|s)

[
Qπθ (s, a)∇ log πθ(a|s)

]
• Advantage expression:

∇V πθ (µ) =
1

1− γEs∼d
πθEa∼πθ(·|s)

[
Aπθ (s, a)∇ log πθ(a|s)

]
The alternative expressions are more helpful to use when we turn to Monte Carlo estimation.

Proof: We have:

∇V πθ (µ) = ∇
∑
τ

R(τ)Prπθµ (τ)

=
∑
τ

R(τ)∇Prπθµ (τ)

=
∑
τ

R(τ)Prπθµ (τ)∇ log Prπθµ (τ)

=
∑
τ

R(τ)Prπθµ (τ)∇ log (µ(s0)πθ(a0|s0)P (s1|s0, a0)πθ(a1|s1) · · · )

=
∑
τ

R(τ)Prπθµ (τ)

( ∞∑
t=0

∇ log πθ(at|st)
)

which completes the proof of the first claim.
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For the second claim, for any state s0

∇V πθ (s0)

= ∇
∑
a0

πθ(a0|s0)Qπθ (s0, a0)

=
∑
a0

(
∇πθ(a0|s0)

)
Qπθ (s0, a0) +

∑
a0

πθ(a0|s0)∇Qπθ (s0, a0)

=
∑
a0

πθ(a0|s0)
(
∇ log πθ(a0|s0)

)
Qπθ (s0, a0)

+
∑
a0

πθ(a0|s0)∇
(
r(s0, a0) + γ

∑
s1

P (s1|s0, a0)V πθ (s1)
)

=
∑
a0

πθ(a0|s0)
(
∇ log πθ(a0|s0)

)
Qπθ (s0, a0) + γ

∑
a0,s1

πθ(a0|s0)P (s1|s0, a0)∇V πθ (s1)

= Eτ∼Pr
πθ
s0

[Qπθ (s0, a0)∇ log πθ(a0|s0)] + γEτ∼Pr
πθ
s0

[∇V πθ (s1)] .

By linearity of expectation,

∇V πθ (µ)

= Eτ∼Pr
πθ
µ

[Qπθ (s0, a0)∇ log πθ(a0|s0)] + γEτ∼Pr
πθ
µ

[∇V πθ (s1)]

= Eτ∼Pr
πθ
µ

[Qπθ (s0, a0)∇ log πθ(a0|s0)] + γEτ∼Pr
πθ
µ

[Qπθ (s1, a1)∇ log πθ(a1|s1)] + . . . .

where the last step follows from recursion. This completes the proof of the second claim.

The proof of the final claim is left as an exercise to the reader.

11.2 (Non-convex) Optimization

It is worth explicitly noting that V πθ (s) is non-concave in θ for the softmax parameterizations, so the standard tools
of convex optimization are not applicable.

Lemma 11.5. (Non-convexity) There is an MDP M (described in Figure 0.1) such that the optimization problem
V πθ (s) is not concave for both the direct and softmax parameterizations.

Proof: Recall the MDP in Figure 0.1. Note that since actions in terminal states s3, s4 and s5 do not change the
expected reward, we only consider actions in states s1 and s2. Let the ”up/above” action as a1 and ”right” action as
a2. Note that

V π(s1) = π(a2|s1)π(a1|s2) · r

Now consider
θ(1) = (log 1, log 3, log 3, log 1), θ(2) = (− log 1,− log 3,− log 3,− log 1)

where θ is written as a tuple (θa1,s1 , θa2,s1 , θa1,s2 , θa2,s2). Then, for the softmax parameterization, we have:

π(1)(a2|s1) =
3

4
; π(1)(a1|s2) =

3

4
; V (1)(s1) =

9

16
r

and
π(2)(a2|s1) =

1

4
; π(2)(a1|s2) =

1

4
; V (2)(s1) =

1

16
r.
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s1 s2

s4

s5

s3

0

0

0

0

0 r > 0

0

Figure 0.1: (Non-concavity example) A deterministic MDP corresponding to Lemma 11.5 where V πθ (s) is not con-
cave. Numbers on arrows represent the rewards for each action.

Also, for θ(mid) = θ(1)+θ(2)

2 ,

π(mid)(a2|s1) =
1

2
; π(mid)(a1|s2) =

1

2
; V (mid)(s1) =

1

4
r.

This gives
V (1)(s1) + V (2)(s1) > 2V (mid)(s1),

which shows that V π is non-concave.

11.2.1 Gradient ascent and convergence to stationary points

Let us say a function f : Rd → R is β -smooth if

‖∇f(w)−∇f(w′)‖ ≤ β‖w − w′‖ , (0.3)

where the norm ‖ · ‖ is the Euclidean norm. In other words, the derivatives of f do not change too quickly.

Gradient ascent, with a fixed stepsize η, follows the update rule:

θt+1 = θt + η∇V πθt (µ) .

It is convenient to use the shorthand notation:

π(t) := πθt , V (t) := V πθt

The next lemma is standard in non-convex optimization.

Lemma 11.6. (Convergence to Stationary Points) Assume that for all θ ∈ Θ, V πθ is β-smooth and bounded below by
V∗. Suppose we use the constant stepsize η = 1/β. For all T , we have that

min
t≤T
‖∇V (t)(µ)‖2 ≤ 2β(V ∗(µ)− V (0)(µ))

T
.

11.2.2 Monte Carlo estimation and stochastic gradient ascent

One difficulty is that even if we know the MDP M , computing the gradient may be computationally intensive. It turns
out that we can obtain unbiased estimates of π with only simulation based access to our model, i.e. assuming we can
obtain sampled trajectories τ ∼ Prπθµ .

120



With respect to a trajectory τ , define:

Q̂πθ (st, at) :=

∞∑
t′=t

γt
′−tr(st′ , at′)

∇̂V πθ (µ) :=

∞∑
t=0

γtQ̂πθ (st, at)∇ log πθ(at|st)

We now show this provides an unbiased estimated of the gradient:

Lemma 11.7. (Unbiased gradient estimate) We have :

Eτ∼Pr
πθ
µ

[
∇̂V πθ (µ)

]
= ∇V πθ (µ)

Proof: Observe:

E[∇̂V πθ (µ)] = E

[ ∞∑
t=0

γtQ̂πθ (st, at)∇ log πθ(at|st)
]

(a)
= E

[ ∞∑
t=0

γtE[Q̂πθ (st, at)|st, at]∇ log πθ(at|st)
]

(b)
= E

[ ∞∑
t=0

γtQπθ (st, at)∇ log πθ(at|st)
]

where (a) follows from the tower property of the conditional expectations and (b) follows from that the Markov
property implies E[Q̂πθ (st, at)|st, at] = Qπθ (st, at).

Hence, the following procedure is a stochastic gradient ascent algorithm:

1. initialize θ0.

2. For t = 0, 1, . . .

(a) Sample τ ∼ Prπθµ .
(b) Update:

θt+1 = θt + ηt∇̂V πθ (µ)

where ηt is the stepsize and ̂∇V πθ (µ) estimated with τ .

Note here that we are ignoring that τ is an infinte length sequence. It can be truncated appropriately so as to control
the bias.

The following is standard result with regards to non-convex optimization. Again, with reasonably bounded variance,
we will obtain a point θt with small gradient norm.

Lemma 11.8. (Stochastic Convergence to Stationary Points) Assume that for all θ ∈ Θ, V πθ is β-smooth and bounded
below by V∗. Suppose the variance is bounded as follows:

E[‖∇̂V πθ (µ)−∇V πθ (µ)‖2] ≤ σ2

For t ≤ β(V ∗(µ) − V (0)(µ))/σ2, suppose we use a constant stepsize of ηt = 1/β, and thereafter, we use ηt =√
2/(βT ). For all T , we have:

min
t≤T

E[‖∇V (t)(µ)‖2] ≤ 2β(V ∗(µ)− V (0)(µ))

T
+

√
2σ2

T
.
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Baselines and stochastic gradient ascent

A significant practical issue is that the variance σ2 is often large in practice. Here, a form of variance reduction is
often critical in practice. A common method is as follows.

Let f : S → R.

1. Construct f as an estimate of V πθ (µ). This can be done using any previous data.

2. Sample a new trajectory τ , and define:

Q̂πθ (st, at) :=

∞∑
t′=t

γt
′−tr(st′ , at′)

∇̂V πθ (µ) :=

∞∑
t=0

γt
(
Q̂πθ (st, at)− f(st)

)
∇ log πθ(at|st)

We often refer to f(s) as a baseline at state s.

Lemma 11.9. (Unbiased gradient estimate with Variance Reduction) For any procedure used to construct to the
baseline function f : S → R, if the samples used to construct f are independent of the trajectory τ , where Q̂πθ (st, at)
is constructed using τ , then:

E

[ ∞∑
t=0

γt
(
Q̂πθ (st, at)− f(st)

)
∇ log πθ(at|st)

]
= ∇V πθ (µ)

where the expectation is with respect to both the random trajectory τ and the random function f(·).

Proof: For any function g(s),

E [∇ log π(a|s)g(s)] =
∑
a

∇π(a|s)g(s) = g(s)
∑
a

∇π(a|s) = g(s)∇
∑
a

π(a|s) = g(s)∇1 = 0

Using that f(·) is independent of τ , we have that for all t

E

[ ∞∑
t=0

γtf(st)∇ log πθ(at|st)
]

= 0

The result now follow froms Lemma 11.7.

11.3 Bibliographic Remarks and Further Readings

The REINFOCE algorithm is due to [Williams, 1992], which is an example of the likelihood ratio method for gradient
estimation [Glynn, 1990].

For standard optimization results in non-convex optimization (e.g. Lemma 11.6 and 11.8), we refer the reader to
[Beck, 2017]. Our results for convergence rates for SGD to approximate stationary points follow from [Ghadimi and
Lan, 2013].
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Chapter 12

Optimality

We now seek to understand the global convergence properties of policy gradient methods, when given exact gradients.
Here, we will largely limit ourselves to the (tabular) softmax policy class in Example 11.1.

Given our a starting distribution ρ over states, recall our objective is:

max
θ∈Θ

V πθ (ρ) .

where {πθ|θ ∈ Θ ⊂ Rd} is some class of parametric policies.

While we are interested in good performance under ρ, we will see how it is helpful to optimize under a different
measure µ. Specifically, we consider optimizing V πθ (µ), i.e.

max
θ∈Θ

V πθ (µ) ,

even though our ultimate goal is performance under V πθ (ρ).

We now consider the softmax policy parameterization (0.1). Here, we still have a non-concave optimization problem
in general, as shown in Lemma 11.5, though we do show that global optimality can be reached under certain reg-
ularity conditions. From a practical perspective, the softmax parameterization of policies is preferable to the direct
parameterization, since the parameters θ are unconstrained and standard unconstrained optimization algorithms can
be employed. However, optimization over this policy class creates other challenges as we study in this section, as the
optimal policy (which is deterministic) is attained by sending the parameters to infinity.

This chapter will study three algorithms for this problem, for the softmax policy class. The first performs direct policy
gradient ascent on the objective without modification, while the second adds a log barrier regularizer to keep the
parameters from becoming too large, as a means to ensure adequate exploration. Finally, we study the natural policy
gradient algorithm and establish a global optimality convergence rate, with no dependence on the dimension-dependent
factors.

The presentation in this chapter largely follows the results in [Agarwal et al., 2020d].

12.1 Vanishing Gradients and Saddle Points

To understand the necessity of optimizing under a distribution µ that is different from ρ, let us first give an informal
argument that some condition on the state distribution of π, or equivalently µ, is necessary for stationarity to imply
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s0 s1 · · · sH sH+1

a1

a1 a1

a1

a2 a2

a3

a4

a3

a4

Figure 0.1: (Vanishing gradient example) A deterministic, chain MDP of length H + 2. We consider a policy where
π(a|si) = θsi,a for i = 1, 2, . . . ,H . Rewards are 0 everywhere other than r(sH+1, a1) = 1. See Proposition 12.1.

optimality. For example, in a sparse-reward MDP (where the agent is only rewarded upon visiting some small set of
states), a policy that does not visit any rewarding states will have zero gradient, even though it is arbitrarily suboptimal
in terms of values. Below, we give a more quantitative version of this intuition, which demonstrates that even if π
chooses all actions with reasonable probabilities (and hence the agent will visit all states if the MDP is connected),
then there is an MDP where a large fraction of the policies π have vanishingly small gradients, and yet these policies
are highly suboptimal in terms of their value.

Concretely, consider the chain MDP of length H + 2 shown in Figure 0.1. The starting state of interest is state s0 and
the discount factor γ = H/(H + 1). Suppose we work with the direct parameterization, where πθ(a|s) = θs,a for
a = a1, a2, a3 and πθ(a4|s) = 1− θs,a1 − θs,a2 − θs,a3 . Note we do not over-parameterize the policy. For this MDP
and policy structure, if we were to initialize the probabilities over actions, say deterministically, then there is an MDP
(obtained by permuting the actions) where all the probabilities for a1 will be less than 1/4.

The following result not only shows that the gradient is exponentially small in H , it also shows that many higher order
derivatives, up to O(H/ logH), are also exponentially small in H .

Proposition 12.1 (Vanishing gradients at suboptimal parameters). Consider the chain MDP of Figure 0.1, with H + 2
states, γ = H/(H + 1), and with the direct policy parameterization (with 3|S| parameters, as described in the text
above). Suppose θ is such that 0 < θ < 1 (componentwise) and θs,a1 < 1/4 (for all states s). For all k ≤ H

40 log(2H) −
1, we have

∥∥∇kθV πθ (s0)
∥∥ ≤ (1/3)H/4, where ∇kθV πθ (s0) is a tensor of the kth order derivatives of V πθ (s0) and the

norm is the operator norm of the tensor.1 Furthermore, V ?(s0)− V πθ (s0) ≥ (H + 1)/8− (H + 1)2/3H .

We do not prove this lemma here (see Section 12.5). The lemma illustrates that lack of good exploration can indeed be
detrimental in policy gradient algorithms, since the gradient can be small either due to π being near-optimal, or, simply
because π does not visit advantageous states often enough. Furthermore, this lemma also suggests that varied results
in the non-convex optimization literature, on escaping from saddle points, do not directly imply global convergence
due to that the higher order derivatives are small.

While the chain MDP of Figure 0.1, is a common example where sample based estimates of gradients will be 0 under
random exploration strategies; there is an exponentially small in H chance of hitting the goal state under a random
exploration strategy. Note that this lemma is with regards to exact gradients. This suggests that even with exact
computations (along with using exact higher order derivatives) we might expect numerical instabilities.

12.2 Policy Gradient Ascent

Let us now return to the softmax policy class, from Equation 0.1, where:

πθ(a|s) =
exp(θs,a)∑
a′ exp(θs,a′)

,

1The operator norm of a kth-order tensor J ∈ Rd⊗k is defined as supu1,...,uk∈Rd : ‖ui‖2=1〈J, u1 ⊗ . . .⊗ ud〉.
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where the number of parameters in this policy class is |S||A|.
Observe that:

∂ log πθ(a|s)
∂θs′,a′

= 1
[
s = s′

](
1
[
a = a′

]
− πθ(a′|s)

)
where 1[E ] is the indicator of E being true.

Lemma 12.2. For the softmax policy class, we have:

∂V πθ (µ)

∂θs,a
=

1

1− γ d
πθ
µ (s)πθ(a|s)Aπθ (s, a) (0.1)

Proof: Using the advantage expression for the policy gradient (see Theorem 11.4),

∂V πθ (µ)

∂θs′,a′
=

1

1− γEs∼d
πθ
µ
Ea∼πθ(·|s)

[
Aπθ (s, a)

∂ log πθ(a|s)
∂θs′,a′

]
=

1

1− γEs∼d
πθ
µ
Ea∼πθ(·|s)

[
Aπθ (s, a)1

[
s = s′

](
1
[
a = a′

]
− πθ(a′|s)

)]
=

1

1− γ d
πθ
µ (s′)Ea∼πθ(·|s′)

[
Aπθ (s′, a)

(
1
[
a = a′

]
− πθ(a′|s′)

)]
=

1

1− γ d
πθ
µ (s′)

(
Ea∼πθ(·|s′)

[
Aπθ (s′, a)1

[
a = a′

]]
− πθ(a′|s′)Ea∼πθ(·|s′)

[
Aπθ (s′, a)

])
=

1

1− γ d
πθ
µ (s′)πθ(a

′|s′)Aπθ (s′, a′)− 0 ,

where the last step uses that for any policy
∑
a π(a|s)Aπ(s, a) = 0.

The update rule for gradient ascent is:
θ(t+1) = θ(t) + η∇θV (t)(µ). (0.2)

Recall from Lemma 11.5 that, even for the case of the softmax policy class (which contains all stationary policies), our
optimization problem is non-convex. Furthermore, due to the exponential scaling with the parameters θ in the softmax
parameterization, any policy that is nearly deterministic will have gradients close to 0. Specifically, for any sequence
of policies πθt that becomes deterministic, ‖∇V πθt‖ → 0.

In spite of these difficulties, it turns out we have a positive result that gradient ascent asymptotically converges to the
global optimum for the softmax parameterization.

Theorem 12.3 (Global convergence for softmax parameterization). Assume we follow the gradient ascent update rule
as specified in Equation (0.2) and that the distribution µ is strictly positive i.e. µ(s) > 0 for all states s. Suppose
η ≤ (1−γ)3

8 , then we have that for all states s, V (t)(s)→ V ?(s) as t→∞.

The proof is somewhat technical, and we do not provide a proof here (see Section 12.5).

A few remarks are in order. Theorem 12.3 assumed that optimization distribution µ was strictly positive, i.e. µ(s) > 0
for all states s. We conjecture that any gradient ascent may not globally converge if this condition is not met. The
concern is that if this condition is not met, then gradient ascent may not globally converge due to that dπθµ (s) effectively
scales down the learning rate for the parameters associated with state s (see Equation 0.1).

Furthermore, there is strong reason to believe that the convergence rate for this is algorithm (in the worst case) is
exponentially slow in some of the relevant quantities, such as in terms of the size of state space. We now turn to a
regularization based approach to ensure convergence at a polynomial rate in all relevant quantities.
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12.3 Log Barrier Regularization

Due to the exponential scaling with the parameters θ, policies can rapidly become near deterministic, when optimizing
under the softmax parameterization, which can result in slow convergence. Indeed a key challenge in the asymptotic
analysis in the previous section was to handle the growth of the absolute values of parameters as they tend to infinity.
Recall that the relative-entropy for distributions p and q is defined as:

KL(p, q) := Ex∼p[− log q(x)/p(x)].

Denote the uniform distribution over a set X by UnifX , and define the following log barrier regularized objective as:

Lλ(θ) := V πθ (µ)− λEs∼UnifS

[
KL(UnifA, πθ(·|s))

]
= V πθ (µ) +

λ

|S| |A|
∑
s,a

log πθ(a|s) + λ log |A| , (0.3)

where λ is a regularization parameter. The constant (i.e. the last term) is not relevant with regards to optimization.
This regularizer is different from the more commonly utilized entropy regularizer, a point which we return to later.

The policy gradient ascent updates for Lλ(θ) are given by:

θ(t+1) = θ(t) + η∇θLλ(θ(t)). (0.4)

We now see that any approximate first-order stationary points of the entropy-regularized objective is approximately
globally optimal, provided the regularization is sufficiently small.

Theorem 12.4. (Log barrier regularization) Suppose θ is such that:

‖∇θLλ(θ)‖2 ≤ εopt

and εopt ≤ λ/(2|S| |A|). Then we have that for all starting state distributions ρ:

V πθ (ρ) ≥ V ?(ρ)− 2λ

1− γ

∥∥∥∥∥dπ
?

ρ

µ

∥∥∥∥∥
∞

.

We refer to
∥∥∥∥dπ?ρµ ∥∥∥∥

∞
as the distribution mismatch coefficient. The above theorem shows the importance of having an

appropriate measure µ(s) in order for the approximate first-order stationary points to be near optimal.

Proof: The proof consists of showing that maxaA
πθ (s, a) ≤ 2λ/(µ(s)|S|) for all states. To see that this is sufficient,

observe that by the performance difference lemma (Lemma 1.16),

V ?(ρ)− V πθ (ρ) =
1

1− γ
∑
s,a

dπ
?

ρ (s)π?(a|s)Aπθ (s, a)

≤ 1

1− γ
∑
s

dπ
?

ρ (s) max
a∈A

Aπθ (s, a)

≤ 1

1− γ
∑
s

2dπ
?

ρ (s)λ/(µ(s)|S|)

≤ 2λ

1− γ max
s

(
dπ

?

ρ (s)

µ(s)

)
.
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which would then complete the proof.

We now proceed to show that maxaA
πθ (s, a) ≤ 2λ/(µ(s)|S|). For this, it suffices to bound Aπθ (s, a) for any state-

action pair s, a where Aπθ (s, a) ≥ 0 else the claim is trivially true. Consider an (s, a) pair such that Aπθ (s, a) > 0.
Using the policy gradient expression for the softmax parameterization (see Equation 0.1),

∂Lλ(θ)

∂θs,a
=

1

1− γ d
πθ
µ (s)πθ(a|s)Aπθ (s, a) +

λ

|S|

(
1

|A| − πθ(a|s)
)
. (0.5)

The gradient norm assumption ‖∇θLλ(θ)‖2 ≤ εopt implies that:

εopt ≥
∂Lλ(θ)

∂θs,a
=

1

1− γ d
πθ
µ (s)πθ(a|s)Aπθ (s, a) +

λ

|S|

(
1

|A| − πθ(a|s)
)

≥ λ

|S|

(
1

|A| − πθ(a|s)
)
,

where we have used Aπθ (s, a) ≥ 0. Rearranging and using our assumption εopt ≤ λ/(2|S| |A|),

πθ(a|s) ≥
1

|A| −
εopt|S|
λ
≥ 1

2|A| .

Solving for Aπθ (s, a) in (0.5), we have:

Aπθ (s, a) =
1− γ
dπθµ (s)

(
1

πθ(a|s)
∂Lλ(θ)

∂θs,a
+

λ

|S|

(
1− 1

πθ(a|s)|A|

))
≤ 1− γ

dπθµ (s)

(
2|A|εopt +

λ

|S|

)
≤ 2

1− γ
dπθµ (s)

λ

|S|
≤ 2λ/(µ(s)|S|) ,

where the penultimate step uses εopt ≤ λ/(2|S| |A|) and the final step uses dπθµ (s) ≥ (1− γ)µ(s). This completes the
proof.

The policy gradient ascent updates for Lλ(θ) are given by:

θ(t+1) = θ(t) + η∇θLλ(θ(t)). (0.6)

By combining the above theorem with the convergence of gradient ascent to first order stationary points (Lemma 11.6),
we obtain the following corollary.

Corollary 12.5. (Iteration complexity with log barrier regularization) Let βλ := 8γ
(1−γ)3 + 2λ

|S| . Starting from any

initial θ(0), consider the updates (0.6) with λ = ε(1−γ)

2

∥∥∥∥ dπ?ρµ ∥∥∥∥
∞

and η = 1/βλ. Then for all starting state distributions ρ,

we have

min
t<T

{
V ?(ρ)− V (t)(ρ)

}
≤ ε whenever T ≥ 320|S|2|A|2

(1− γ)6 ε2

∥∥∥∥∥dπ
?

ρ

µ

∥∥∥∥∥
2

∞

.

The corollary shows the importance of balancing how the regularization parameter λ is set relative to the desired
accuracy ε, as well as the importance of the initial distribution µ to obtain global optimality.
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Proof:[of Corollary 12.5] Let βλ be the smoothness of Lλ(θ). A valid upper bound on βλ is:

βλ =
8γ

(1− γ)3
+

2λ

|S| ,

where we leave the proof as an exercise to the reader.

Using Theorem 12.4, the desired optimality gap ε will follow if we set λ = ε(1−γ)

2

∥∥∥∥ dπ?ρµ ∥∥∥∥
∞

and if ‖∇θLλ(θ)‖2 ≤

λ/(2|S| |A|). In order to complete the proof, we need to bound the iteration complexity of making the gradient
sufficiently small.

By Lemma 11.6, after T iterations of gradient ascent with stepsize of 1/βλ, we have

min
t≤T

∥∥∥∇θLλ(θ(t))
∥∥∥2

2
≤ 2βλ(Lλ(θ?)− Lλ(θ(0)))

T
≤ 2βλ

(1− γ)T
, (0.7)

where βλ is an upper bound on the smoothness of Lλ(θ). We seek to ensure

εopt ≤
√

2βλ
(1− γ)T

≤ λ

2|S| |A|

Choosing T ≥ 8βλ |S|2|A|2
(1−γ)λ2 satisfies the above inequality. Hence,

8βλ |S|2|A|2
(1− γ)λ2

≤ 64 |S|2|A|2
(1− γ)4 λ2

+
16 |S||A|2
(1− γ)λ

≤ 80 |S|2|A|2
(1− γ)4 λ2

=
320 |S|2|A|2
(1− γ)6 ε2

∥∥∥∥∥dπ
?

ρ

µ

∥∥∥∥∥
2

∞

where we have used that λ < 1. This completes the proof.

Entropy vs. log barrier regularization. A commonly considered regularizer is the entropy, where the regularizer
would be:

1

|S|
∑
s

H(πθ(·|s)) =
1

|S|
∑
s

∑
a

−πθ(a|s) log πθ(a|s).

Note the entropy is far less aggressive in penalizing small probabilities, in comparison to the log barrier, which is
equivalent to the relative entropy. In particular, the entropy regularizer is always bounded between 0 and log |A|,
while the relative entropy (against the uniform distribution over actions), is bounded between 0 and infinity, where it
tends to infinity as probabilities tend to 0. Here, it can be shown that the convergence rate is asymptotically O(1ε) (see
Section 12.5) though it is unlikely that the convergence rate for this method is polynomial in other relevant quantities,
including |S|, |A|, 1/(1 − γ), and the distribution mismatch coefficient. The polynomial convergence rate using
the log barrier (KL) regularizer crucially relies on the aggressive nature in which the relative entropy prevents small
probabilities.

12.4 The Natural Policy Gradient

Observe that a policy constitutes a family of probability distributions {πθ(·|s)|s ∈ S}. We now consider a pre-
conditioned gradient descent method based on this family of distributions. Recall that the Fisher information matrix
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of a parameterized density pθ(x) is defined as Ex∼pθ
[
∇ log pθ(x)∇ log pθ(x)>

]
. Now we let us define Fθρ as an

(average) Fisher information matrix on the family of distributions {πθ(·|s)|s ∈ S} as follows:

Fθρ := Es∼dπθρ Ea∼πθ(·|s)
[
(∇ log πθ(a|s))∇ log πθ(a|s)>

]
.

Note that the average is under the state-action visitation frequencies. The NPG algorithm performs gradient updates
in the geometry induced by this matrix as follows:

θ(t+1) = θ(t) + ηFρ(θ
(t))†∇θV (t)(ρ), (0.8)

where M† denotes the Moore-Penrose pseudoinverse of the matrix M .

Throughout this section, we restrict to using the initial state distribution ρ ∈ ∆(S) in our update rule in (0.8) (so
our optimization measure µ and the performance measure ρ are identical). Also, we restrict attention to states s ∈ S
reachable from ρ, since, without loss of generality, we can exclude states that are not reachable under this start state
distribution2.

For the softmax parameterization, this method takes a particularly convenient form; it can be viewed as a soft policy
iteration update.

Lemma 12.6. (Softmax NPG as soft policy iteration) For the softmax parameterization (0.1), the NPG updates (0.8)
take the form:

θ(t+1) = θ(t) +
η

1− γA
(t) + ηv and π(t+1)(a|s) = π(t)(a|s)exp

(
ηA(t)(s, a)/(1− γ)

)
Zt(s)

,

where Zt(s) =
∑
a∈A π

(t)(a|s) exp
(
ηA(t)(s, a)/(1− γ)

)
. Here, v is only a state dependent offset (i.e. vs,a = cs for

some cs ∈ R for each state s), and, owing to the normalization Zt(s), v has no effect on the update rule.

It is important to note that while the ascent direction was derived using the gradient ∇θV (t)(ρ), which depends on
ρ, the NPG update rule actually has no dependence on the measure ρ. Furthermore, there is no dependence on the
state distribution d(t)

ρ , which is due to the pseudoinverse of the Fisher information cancelling out the effect of the state
distribution in NPG.

Proof: By definition of the Moore-Penrose pseudoinverse, we have that (Fθρ )†∇V πθ (ρ) = w? if an only if w? is the
minimum norm solution of:

min
w
‖∇V πθ (ρ)−Fθρw‖2 .

Let us first evaluate Fθρw. For the softmax policy parameterization, Lemma 0.1 implies:

w>∇θ log πθ(a|s) = ws,a −
∑
a′∈A

ws,a′πθ(a
′|s) := ws,a − ws

where ws is not a function of a. This implies that:

Fθρw = Es∼dπθρ Ea∼πθ(·|s)

[
∇ log πθ(a|s)

(
w>∇θ log πθ(a|s)

)]
= Es∼dπθρ Ea∼πθ(·|s)

[
∇ log πθ(a|s)

(
ws,a − ws

)]
= Es∼dπθρ Ea∼πθ(·|s)

[
ws,a∇ log πθ(a|s)

]
,

where the last equality uses that ws is not a function of s. Again using the functional form of derivative of the softmax
policy parameterization, we have: [

Fθρw
]
s′,a′

= dπθ (s′)πθ(a
′|s′)

(
ws′,a′ − ws′

)
.

2Specifically, we restrict the MDP to the set of states {s ∈ S : ∃π such that dπρ (s) > 0}.
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This implies:

‖∇V πθ (ρ)−Fθρw‖2 =
∑
s,a

(
dπθ (s)πθ(a|s)

(
1

1− γA
πθ (s, a)−

[
Fθρw

]
s,a

))2

=
∑
s,a

(
dπθ (s)πθ(a|s)

(
1

1− γA
πθ (s, a)− ws,a −

∑
a′∈A

ws,a′πθ(a
′|s)
))2

.

Due to that w = 1
1−γA

πθ leads to 0 error, the above implies that all 0 error solutions are of the form w = 1
1−γA

πθ +v,
where v is only a state dependent offset (i.e. vs,a = cs for some cs ∈ R for each state s). The first claim follows due to
that the minimum norm solution is one of these solutions. The proof of the second claim now follows by the definition
of the NPG update rule, along with that v has no effect on the update rule due to the normalization constant Zt(s).

We now see that this algorithm enjoys a dimension free convergence rate.

Theorem 12.7 (Global convergence for NPG). Suppose we run the NPG updates (0.8) using ρ ∈ ∆(S) and with
θ(0) = 0. Fix η > 0. For all T > 0, we have:

V (T )(ρ) ≥ V ∗(ρ)− log |A|
ηT

− 1

(1− γ)2T
.

Note in the above the theorem that the NPG algorithm is directly applied to the performance measure V π(ρ), and
the guarantees are also with respect to ρ. In particular, there is no distribution mismatch coefficient in the rate of
convergence.

Now setting η ≥ (1− γ)2 log |A|, we see that NPG finds an ε-optimal policy in a number of iterations that is at most:

T ≤ 2

(1− γ)2ε
,

which has no dependence on the number of states or actions, despite the non-concavity of the underlying optimization
problem.

The proof strategy we take borrows ideas from the classical multiplicative weights algorithm (see Section!12.5).

First, the following improvement lemma is helpful:

Lemma 12.8 (Improvement lower bound for NPG). For the iterates π(t) generated by the NPG updates (0.8), we have
for all starting state distributions µ

V (t+1)(µ)− V (t)(µ) ≥ (1− γ)

η
Es∼µ logZt(s) ≥ 0.

Proof: First, let us show that logZt(s) ≥ 0. To see this, observe:

logZt(s) = log
∑
a

π(t)(a|s) exp(ηA(t)(s, a)/(1− γ))

≥
∑
a

π(t)(a|s) log exp(ηA(t)(s, a)/(1− γ)) =
η

1− γ
∑
a

π(t)(a|s)A(t)(s, a) = 0.

where we have used Jensen’s inequality on the concave function log x and that
∑
a π

(t)(a|s)A(t)(s, a) = 0. By the
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performance difference lemma,

V (t+1)(µ)− V (t)(µ) =
1

1− γEs∼d(t+1)
µ

∑
a

π(t+1)(a|s)A(t)(s, a)

=
1

η
E
s∼d(t+1)

µ

∑
a

π(t+1)(a|s) log
π(t+1)(a|s)Zt(s)

π(t)(a|s)

=
1

η
E
s∼d(t+1)

µ
KL(π(t+1)

s ||π(t)
s ) +

1

η
E
s∼d(t+1)

µ
logZt(s)

≥ 1

η
E
s∼d(t+1)

µ
logZt(s) ≥

1− γ
η

Es∼µ logZt(s),

where the last step uses that d(t+1)
µ ≥ (1− γ)µ (by (0.9)) and that logZt(s) ≥ 0.

With this lemma, we now prove Theorem 12.7.

Proof:[of Theorem 12.7] Since ρ is fixed, we use d? as shorthand for dπ
?

ρ ; we also use πs as shorthand for the vector
of π(·|s). By the performance difference lemma (Lemma 1.16),

V π
?

(ρ)− V (t)(ρ) =
1

1− γEs∼d?
∑
a

π?(a|s)A(t)(s, a)

=
1

η
Es∼d?

∑
a

π?(a|s) log
π(t+1)(a|s)Zt(s)

π(t)(a|s)

=
1

η
Es∼d?

(
KL(π?s ||π(t)

s )−KL(π?s ||π(t+1)
s ) +

∑
a

π∗(a|s) logZt(s)

)

=
1

η
Es∼d?

(
KL(π?s ||π(t)

s )−KL(π?s ||π(t+1)
s ) + logZt(s)

)
,

where we have used the closed form of our updates from Lemma 12.6 in the second step.

By applying Lemma 12.8 with d? as the starting state distribution, we have:

1

η
Es∼d? logZt(s) ≤

1

1− γ
(
V (t+1)(d?)− V (t)(d?)

)
which gives us a bound on Es∼d? logZt(s).

Using the above equation and that V (t+1)(ρ) ≥ V (t)(ρ) (as V (t+1)(s) ≥ V (t)(s) for all states s by Lemma 12.8), we
have:

V π
?

(ρ)− V (T−1)(ρ) ≤ 1

T

T−1∑
t=0

(V π
?

(ρ)− V (t)(ρ))

=
1

ηT

T−1∑
t=0

Es∼d?(KL(π?s ||π(t)
s )−KL(π?s ||π(t+1)

s )) +
1

ηT

T−1∑
t=0

Es∼d? logZt(s)

≤ Es∼d?KL(π?s ||π(0))

ηT
+

1

(1− γ)T

T−1∑
t=0

(
V (t+1)(d?)− V (t)(d?)

)
=

Es∼d?KL(π?s ||π(0))

ηT
+
V (T )(d?)− V (0)(d?)

(1− γ)T

≤ log |A|
ηT

+
1

(1− γ)2T
.

The proof is completed using that V (T )(ρ) ≥ V (T−1)(ρ).
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12.5 Bibliographic Remarks and Further Readings

The natural policy gradient method was originally presented in [Kakade, 2001]; a number of arguments for this method
have been provided based on information geometry [Kakade, 2001, Bagnell and Schneider, 2003, Peters and Schaal,
2008].

The convergence rates in this chapter are largely derived from [Agarwal et al., 2020d]. The proof strategy for the NPG
analysis has origins in the online regret framework in changing MDPs [Even-Dar et al., 2009], which would result in
a worst rate in comparison to [Agarwal et al., 2020d]. This observation that the proof strategy from [Even-Dar et al.,
2009] provided a convergence rate for the NPG was made in [Neu et al., 2017]. The faster NPG rate we present here
is due to [Agarwal et al., 2020d]. The analysis of the MD-MPI algorithm [Geist et al., 2019] also implies a O(1/T )
rate for the NPG, though with worse dependencies on other parameters.

Building on ideas in [Agarwal et al., 2020d], [Mei et al., 2020] showed that, for the softmax policy class, both the
gradient ascent and entropy regularized gradient ascent asymptotically converge at a O(1/t); it is unlikely these meth-
ods are have finite rate which are polynomial in other quantities (such as the |S|, |A|, 1/(1 − γ), and the distribution
mismatch coefficient).

[Mnih et al., 2016] introduces the entropy regularizer (also see [Ahmed et al., 2019] for a more detailed empirical
investigation).
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Chapter 13

Function Approximation and the NPG

We now analyze the case of using parametric policy classes:

Π = {πθ | θ ∈ Rd},

where Π may not contain all stochastic policies (and it may not even contain an optimal policy). In contrast with the
tabular results in the previous sections, the policy classes that we are often interested in are not fully expressive, e.g.
d� |S||A| (indeed |S| or |A| need not even be finite for the results in this section); in this sense, we are in the regime
of function approximation.

We focus on obtaining agnostic results, where we seek to do as well as the best policy in this class (or as well as some
other comparator policy). While we are interested in a solution to the (unconstrained) policy optimization problem

max
θ∈Rd

V πθ (ρ),

(for a given initial distribution ρ), we will see that optimization with respect to a different distribution will be helpful,
just as in the tabular case,

We will consider variants of the NPG update rule (0.8):

θ ← θ + ηFρ(θ)
†∇θV θ(ρ) . (0.1)

Our analysis will leverage a close connection between the NPG update rule (0.8) with the notion of compatible function
approximation. We start by formalizing this connection. The compatible function approximation error also provides a
measure of the expressivity of our parameterization, allowing us to quantify the relevant notion of approximation error
for the NPG algorithm.

The main results in this chapter establish the effectiveness of NPG updates where there is error both due to statistical
estimation (where we may not use exact gradients) and approximation (due to using a parameterized function class).
We will see an precise estimation/approximation decomposition based on the compatible function approximation error.

The presentation in this chapter largely follows the results in [Agarwal et al., 2020d].

13.1 Compatible function approximation and the NPG

We now introduce the notion of compatible function approximation, which both provides some intuition with regards
to policy gradient methods and it will help us later on with regards to characterizing function approximation.
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Lemma 13.1 (Gradients and compatible function approximation). Let w? denote the following minimizer:

w? ∈ Es∼dπθµ Ea∼πθ(·|s)

[(
Aπθ (s, a)− w · ∇θ log πθ(a|s)

)2]
,

where the squared error above is referred to as the compatible function approximation. Denote the best linear predic-
tor of Aπθ (s, a) using ∇θ log πθ(a|s) by Âπθ (s, a), i.e.

Âπθ (s, a) := w? · ∇θ log πθ(a|s).

We have that:

∇θV πθ (µ) =
1

1− γ Es∼dπθµ Ea∼πθ(·|s)
[
∇θ log πθ(a|s)Âπθ (s, a)

]
.

Proof: The first order optimality conditions for w? imply

Es∼dπθµ Ea∼πθ(·|s)

[(
Aπθ (s, a)− w? · ∇θ log πθ(a|s)

)
∇θ log πθ(a|s)

]
= 0 (0.2)

Rearranging and using the definition of Âπθ (s, a),

∇θV πθ (µ) =
1

1− γ Es∼dπθµ Ea∼πθ(·|s)
[
∇θ log πθ(a|s)Aπθ (s, a)

]
=

1

1− γ Es∼dπθµ Ea∼πθ(·|s)
[
∇θ log πθ(a|s)Âπθ (s, a)

]
,

which completes the proof.

The next lemma shows that the weight vector above is precisely the NPG ascent direction. Precisely,

Lemma 13.2. We have that:
Fρ(θ)

†∇θV θ(ρ) =
1

1− γw
?, (0.3)

where w? is a minimizer of the following regression problem:

w? ∈ argminw Es∼dπθρ ,a∼πθ(·|s)
[
(w>∇θ log πθ(·|s)−Aπθ (s, a))2

]
.

Proof: The above is a straightforward consequence of the first order optimality conditions (see Equation 0.2). Specif-
ically, Equation 0.2, along with the advantage expression for the policy gradient (see Theorem 11.4), imply that w?

must satisfy:

∇θV θ(ρ) =
1

1− γ Fρ(θ)w
?

which completes the proof.

This lemma implies that we might write the NPG update rule as:

θ ← θ +
η

1− γw
? .

where w? is minimizer of the compatible function approximation error (which depends on θ.

The above regression problem can be viewed as “compatible” function approximation: we are approximatingAπθ (s, a)
using the∇θ log πθ(·|s) as features. We also consider a variant of the above update rule, Q-NPG, where instead of us-
ing advantages in the above regression we use the Q-values. This viewpoint provides a methodology for approximate
updates, where we can solve the relevant regression problems with samples.
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13.2 Examples: NPG and Q-NPG

In practice, the most common policy classes are of the form:

Π =

{
πθ(a|s) =

exp
(
fθ(s, a)

)∑
a′∈A exp

(
fθ(s, a′)

) ∣∣∣∣ θ ∈ Rd
}
, (0.4)

where fθ is a differentiable function. For example, the tabular softmax policy class is one where fθ(s, a) = θs,a.
Typically, fθ is either a linear function or a neural network. Let us consider the NPG algorithm, and a variant Q-NPG,
in each of these two cases.

13.2.1 Log-linear Policy Classes and Soft Policy Iteration

For any state-action pair (s, a), suppose we have a feature mapping φs,a ∈ Rd. Each policy in the log-linear policy
class is of the form:

πθ(a|s) =
exp(θ · φs,a)∑

a′∈A exp(θ · φs,a′)
,

with θ ∈ Rd. Here, we can take fθ(s, a) = θ · φs,a.

With regards to compatible function approximation for the log-linear policy class, we have:

∇θ log πθ(a|s) = φ
θ

s,a,where φ
θ

s,a = φs,a − Ea′∼πθ(·|s)[φs,a′ ],

that is, φ
θ

s,a is the centered version of φs,a. With some abuse of notation, we accordingly also define φ̄π for any policy
π. Here, using (0.3), the NPG update rule (0.1) is equivalent to:

NPG: θ ← θ + ηw?, w? ∈ argminw Es∼dπθρ ,a∼πθ(·|s)

[(
Aπθ (s, a)− w · φ θ

s,a

)2]
.

(We have rescaled the learning rate η in comparison to (0.1)). Note that we recompute w? for every update of θ. Here,
the compatible function approximation error measures the expressivity of our parameterization in how well linear
functions of the parameterization can capture the policy’s advantage function.

We also consider a variant of the NPG update rule (0.1), termed Q-NPG, where:

Q-NPG: θ ← θ + ηw?, w? ∈ argminw Es∼dπθρ ,a∼πθ(·|s)

[(
Qπθ (s, a)− w · φs,a

)2]
.

Note we do not center the features for Q-NPG; observe that Qπ(s, a) is also not 0 in expectation under π(·|s), unlike
the advantage function.

(NPG/Q-NPG and Soft-Policy Iteration) We now see how we can view both NPG and Q-NPG as an incremental (soft)
version of policy iteration, just as in Lemma 12.6 for the tabular case. Rather than writing the update rule in terms of
the parameter θ, we can write an equivalent update rule directly in terms of the (log-linear) policy π:

NPG: π(a|s)← π(a|s) exp(w? · φs,a)/Zs, w? ∈ argminw Es∼dπρ ,a∼π(·|s)

[(
Aπ(s, a)− w · φ π

s,a

)2]
,

where Zs is normalization constant. While the policy update uses the original features φ instead of φ
π

, whereas the
quadratic error minimization is terms of the centered features φ

π
, this distinction is not relevant due to that we may

also instead use φ
π

(in the policy update) which would result in an equivalent update; the normalization makes the
update invariant to (constant) translations of the features. Similarly, an equivalent update forQ-NPG, where we update
π directly rather than θ, is:

Q-NPG: π(a|s)← π(a|s) exp(w? · φs,a)/Zs, w? ∈ argminw Es∼dπρ ,a∼π(·|s)

[(
Qπ(s, a)− w · φs,a

)2]
.
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(On the equivalence of NPG and Q-NPG) If it is the case that the compatible function approximation error is 0, then
it straightforward to verify that the NPG and Q-NPG are equivalent algorithms, in that their corresponding policy
updates will be equivalent to each other.

13.2.2 Neural Policy Classes

Now suppose fθ(s, a) is a neural network parameterized by θ ∈ Rd, where the policy class Π is of form in (0.4).
Observe:

∇θ log πθ(a|s) = gθ(s, a),where gθ(s, a) = ∇θfθ(s, a)− Ea′∼πθ(·|s)[∇θfθ(s, a′)],
and, using (0.3), the NPG update rule (0.1) is equivalent to:

NPG: θ ← θ + ηw?, w? ∈ argminw Es∼dπθρ ,a∼πθ(·|s)

[(
Aπθ (s, a)− w · gθ(s, a)

)2]
(Again, we have rescaled the learning rate η in comparison to (0.1)).

The Q-NPG variant of this update rule is:

Q-NPG: θ ← θ + ηw?, w? ∈ argminw Es∼dπθρ ,a∼πθ(·|s)

[(
Qπθ (s, a)− w · ∇θfθ(s, a)

)2]
.

13.3 The NPG “Regret Lemma”

It is helpful for us to consider NPG more abstractly, as an update rule of the form

θ(t+1) = θ(t) + ηw(t). (0.5)

We will now provide a lemma where w(t) is an arbitrary (bounded) sequence, which will be helpful when specialized.

Recall a function f : Rd → R is said to be β-smooth if for all x, x′ ∈ Rd:

‖∇f(x)−∇f(x′)‖2 ≤ β‖x− x′‖2 ,

and, due to Taylor’s theorem, recall that this implies:∣∣∣∣f(x′)− f(x)−∇f(x) · (x′ − x)

∣∣∣∣ ≤ β

2
‖x′ − x‖22 . (0.6)

The following analysis of NPG is draws close connections to the mirror-descent approach used in online learning (see
Section 13.6), which motivates us to refer to it as a “regret lemma”.

Lemma 13.3. (NPG Regret Lemma) Fix a comparison policy π̃ and a state distribution ρ. Assume for all s ∈ S
and a ∈ A that log πθ(a|s) is a β-smooth function of θ. Consider the update rule (0.5), where π(0) is the uniform
distribution (for all states) and where the sequence of weights w(0), . . . , w(T ), satisfies ‖w(t)‖2 ≤W (but is otherwise
arbitrary). Define:

errt = Es∼d̃ Ea∼π̃(·|s)

[
A(t)(s, a)− w(t) · ∇θ log π(t)(a|s)

]
.

Using η =
√

2 log |A|/(βW 2T ), we have that:

min
t<T

{
V π̃(ρ)− V (t)(ρ)

}
≤ 1

1− γ

(
W

√
2β log |A|

T
+

1

T

T−1∑
t=0

errt

)
.
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This lemma is the key tool in understanding the role of function approximation of various algorithms. We will consider
one example in detail with regards to the log-linear policy class (from Example 11.2).

Note that when errt = 0, as will be the case with the (tabular) softmax policy class with exact gradients, we obtain
a convergence rate of O(

√
1/T ) using a learning rate of η = O(

√
1/T ). Note that this is slower than the faster rate

of O(1/T ), provided in Theorem 12.7. Obtaining a bound that leads to a faster rate in the setting with errors requires
more complicated dependencies on errt than those stated above.

Proof: By smoothness (see (0.6)),

log
π(t+1)(a|s)
π(t)(a|s) ≥ ∇θ log π(t)(a|s) ·

(
θ(t+1) − θ(t)

)
− β

2
‖θ(t+1) − θ(t)‖22

= η∇θ log π(t)(a|s) · w(t) − η2 β

2
‖w(t)‖22.

We use d̃ as shorthand for dπ̃ρ (note ρ and π̃ are fixed); for any policy π, we also use πs as shorthand for the distribution
π(·|s). Using the performance difference lemma (Lemma 1.16),

Es∼d̃
(

KL(π̃s||π(t)
s )−KL(π̃s||π(t+1)

s )
)

= Es∼d̃ Ea∼π̃(·|s)

[
log

π(t+1)(a|s)
π(t)(a|s)

]
≥ ηEs∼d̃ Ea∼π̃(·|s)

[
∇θ log π(t)(a|s) · w(t)

]
− η2 β

2
‖w(t)‖22 (using previous display)

= ηEs∼d̃ Ea∼π̃(·|s)

[
A(t)(s, a)

]
− η2 β

2
‖w(t)‖22

+ ηEs∼d̃ Ea∼π̃(·|s)

[
∇θ log π(t)(a|s) · w(t) −A(t)(s, a)

]
= (1− γ)η

(
V π̃(ρ)− V (t)(ρ)

)
− η2 β

2
‖w(t)‖22 − η errt

Rearranging, we have:

V π̃(ρ)− V (t)(ρ) ≤ 1

1− γ

(
1

η
Es∼d̃

(
KL(π̃s||π(t)

s )−KL(π̃s||π(t+1)
s )

)
+
ηβ

2
W 2 + errt

)
Proceeding,

1

T

T−1∑
t=0

(V π̃(ρ)− V (t)(ρ)) ≤ 1

ηT (1− γ)

T−1∑
t=0

Es∼d̃ (KL(π̃s||π(t)
s )−KL(π̃s||π(t+1)

s ))

+
1

T (1− γ)

T−1∑
t=0

(
ηβW 2

2
+ errt

)

≤ Es∼d̃ KL(π̃s||π(0))

ηT (1− γ)
+

ηβW 2

2(1− γ)
+

1

T (1− γ)

T−1∑
t=0

errt

≤ log |A|
ηT (1− γ)

+
ηβW 2

2(1− γ)
+

1

T (1− γ)

T−1∑
t=0

errt,

which completes the proof.
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13.4 Q-NPG: Performance Bounds for Log-Linear Policies

For a state-action distribution υ, define:

L(w; θ, υ) := Es,a∼υ
[(
Qπθ (s, a)− w · φs,a

)2]
.

The iterates of the Q-NPG algorithm can be viewed as minimizing this loss under some (changing) distribution υ.

We now specify an approximate version of Q-NPG. It is helpful to consider a slightly more general version of the
algorithm in the previous section, where instead of optimizing under a starting state distribution ρ, we have a different
starting state-action distribution ν. The motivation for this is similar in spirit to our log barrier regularization: we seek
to maintain exploration (and estimation) over the action space even if the current policy does not have coverage over
the action space.

Analogous to the definition of the state-action visitation measure dπs0 (see Equation 0.8), we define another state-action
visitation measure, dπs0,a0 , as follows:

dπs0,a0(s, a) := (1− γ)

∞∑
t=0

γtPrπ(st = s, at = a|s0, a0) (0.7)

where Prπ(st = s, at = a|s0, a0) is the probability that st = s and at = a, after starting at state s0, taking action a0,
and following π thereafter. Again, we overload notation and write:

dπν (s, a) = Es0,a0∼ν [ds0,a0 ]

where ν is a distribution over S ×A.

Q-NPG will be defined with respect to the on-policy state action measure starting with s0, a0 ∼ ν. As per our
convention, we define

d(t) := dπ
(t)

ν .

The approximate version of this algorithm is:

Approx. Q-NPG: θ(t+1) = θ(t) + ηw(t), w(t) ≈ argmin‖w‖2≤W L(w; θ(t), d(t)), (0.8)

where the above update rule also permits us to constrain the norm of the update direction w(t) (alternatively, we could
use `2 regularization as is also common in practice). The exact minimizer is denoted as:

w
(t)
? ∈ argmin‖w‖2≤W L(w; θ(t), d(t)).

Note that w(t)
? depends on the current parameter θ(t).

Our analysis will take into account both the excess risk (often also referred to as estimation error) and the approxima-
tion error. The standard approximation-estimation error decomposition is as follows:

L(w(t); θ(t), d(t)) = L(w(t); θ(t), d(t))− L(w
(t)
? ; θ(t), d(t))︸ ︷︷ ︸

Excess risk

+L(w
(t)
? ; θ(t), d(t))︸ ︷︷ ︸

Approximation error

Using a sample based approach, we would expect εstat = O(1/
√
N) or better, where N is the number of samples

used to estimate. w(t)
? In constrast, the approximation error is due to modeling error, and does not tend to 0 with more

samples. We will see how these two errors have strikingly different impact on our final performance bound.

Note that we have already considered two cases where εapprox = 0. For the tabular softmax policy class, it is immediate
that εapprox = 0. A more interesting example (where the state and action space could be infinite) is provided by
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the linear parameterized MDP model from Chapter 8. Here, provided that we use the log-linear policy class (see
Section 13.2.1) with features corresponding to the linear MDP features, it is straightforward to see that εapprox = 0
for this log-linear policy class. More generally, we will see the effect of model misspecification in our performance
bounds.

We make the following assumption on these errors:

Assumption 13.4 (Approximation/estimation error bounds). Let w(0), w(1), . . . w(T−1) be the sequence of iterates
used by the Q-NPG algorithm Suppose the following holds for all t < T :

1. (Excess risk) Suppose the estimation error is bounded as follows:

L(w(t); θ(t), d(t))− L(w
(t)
? ; θ(t), d(t)) ≤ εstat

2. (Approximation error) Suppose the approximation error is bounded as follows:

L(w
(t)
? ; θ(t), d(t)) ≤ εapprox.

We will also see how, with regards to our estimation error, we will need a far more mild notion of coverage. Here,
with respect to any state-action distribution υ, define:

Συ = Es,a∼υ
[
φs,aφ

>
s,a

]
.

We make a the following conditioning assumption:

Assumption 13.5 (Relative condition number). Fix a state distribution ρ (this will be what ultimately be the perfor-
mance measure that we seek to optimize). Consider an arbitrary comparator policy π? (not necessarily an optimal
policy). With respect to π?, define the state-action measure d? as

d?(s, a) = dπ
?

ρ (s) · UnifA(a)

i.e. d? samples states from the comparators state visitation measure, dπ
?

ρ and actions from the uniform distribution.
Define

sup
w∈Rd

w>Σd?w

w>Σνw
= κ,

and assume that κ is finite.

We later discuss why it is reasonable to expect that κ is not a quantity related to the size of the state space.

The main result of this chapter shows how the approximation error, the excess risk, and the conditioning, determine
the final performance.

Theorem 13.6. Fix a state distribution ρ; a state-action distribution ν; an arbitrary comparator policy π? (not
necessarily an optimal policy). Suppose Assumption 13.5 holds with respect to these choices and that ‖φs,a‖2 ≤ B

for all s, a. Suppose the Q-NPG update rule (in (0.8)) starts with θ(0) = 0, η =
√

2 log |A|/(B2W 2T ), and the
(random) sequence of iterates satisfies Assumption 13.4. We have that:

E
[
min
t<T

{
V π

?

(ρ)− V (t)(ρ)
}]
≤ BW

1− γ

√
2 log |A|

T
+

√
4|A|

(1− γ)3

(
κ · εstat +

∥∥∥d?
ν

∥∥∥
∞
· εapprox

)
.

Note when εapprox = 0, our convergence rate isO(
√

1/T ) plus a term that depends on the excess risk; hence, provided
we obtain enough samples, then εstat will also tend to 0, and we will be competitive with the comparison policy π?.

The above also shows the striking difference between the effects of estimation error and approximation error. A few
remarks are now in order.
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Transfer learning, distribution shift, and the approximation error. In large scale problems, the worst case distri-
bution mismatch factor

∥∥∥d?ν ∥∥∥∞ is unlikely to be small. However, this factor is ultimately due to transfer learning. Our

approximation error is with respect to the fitting distribution d(t), where we assume that L(w
(t)
? ; θ(t), d(t)) ≤ εapprox.

As the proof will show, the relevant notion of approximation error will be L(w
(t)
? ; θ(t), d?), where d? is the fixed

comparators measure. In others words, to get a good performance bound we need to successfully have low transfer
learning error to the fixed measure d?. Furthermore, in many modern machine learning applications, this error is often
is favorable, in that it is substantially better than worst case theory might suggest.

See Section 13.6 for further remarks on this point.

Dimension dependence in κ and the importance of ν. It is reasonable to think about κ as being dimension de-
pendent (or worse), but it is not necessarily related to the size of the state space. For example, if ‖φs,a‖2 ≤ B, then
κ ≤ B2

σmin(Es,a∼ν [φs,aφ>s,a])
though this bound may be pessimistic. Here, we also see the importance of choice of ν

in having a small (relative) condition number; in particular, this is the motivation for considering the generalization
which allows for a starting state-action distribution ν vs. just a starting state distribution µ (as we did in the tabular
case). Roughly speaking, we desire a ν which provides good coverage over the features. As the following lemma
shows, there always exists a universal distribution ν, which can be constructed only with knowledge of the feature set
(without knowledge of d?), such that κ ≤ d.

Lemma 13.7. (κ ≤ d is always possible) Let Φ = {φ(s, a)|(s, a) ∈ S × A} ⊂ Rd and suppose Φ is a compact set.
There always exists a state-action distribution ν, which is supported on at most d2 state-action pairs and which can
be constructed only with knowledge of Φ (without knowledge of the MDP or d?), such that:

κ ≤ d.

Proof: The distribution can be found through constructing the minimal volume ellipsoid containing Φ, i.e. the Loẅner-
John ellipsoid. To be added...

Direct policy optimization vs. approximate value function programming methods Part of the reason for the
success of the direct policy optimization approaches is to due their more mild dependence on the approximation error.
Here, our theoretical analysis has a dependence on a distribution mismatch coefficient,

∥∥∥d?ν ∥∥∥∞, while approximate
value function methods have even worse dependencies. See Chapter 4. As discussed earlier and as can be seen in
the regret lemma (Lemma 13.3), the distribution mismatch coefficient is due to that the relevant error for NPG is a
transfer error notion to a fixed comparator distribution, while approximate value function methods have more stringent
conditions where the error has to be small under, essentially, the distribution of any other policy.

13.4.1 Analysis

Proof: (of Theorem 13.6) For the log-linear policy class, due to that the feature mapping φ satisfies ‖φs,a‖2 ≤ B,
then it is not difficult to verify that log πθ(a|s) is a B2-smooth function. Using this and the NPG regret lemma
(Lemma 13.3), we have:

min
t<T

{
V π

?

(ρ)− V (t)(ρ)
}
≤ BW

1− γ

√
2 log |A|

T
+

1

(1− γ)T

T−1∑
t=0

errt .

where we have used our setting of η.
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We make the following decomposition of errt:

errt = Es∼d?ρ,a∼π?(·|s)

[
A(t)(s, a)− w(t)

? · ∇θ log π(t)(a|s)
]

+ Es∼d?ρ,a∼π?(·|s)

[(
w

(t)
? − w(t)

)
· ∇θ log π(t)(a|s)

]
.

For the first term, using that∇θ log πθ(a|s) = φs,a − Ea′∼πθ(·|s)[φs,a′ ] (see Section 13.2.1), we have:

Es∼d?ρ,a∼π?(·|s)

[
A(t)(s, a)− w(t)

? · ∇θ log π(t)(a|s)
]

= Es∼d?ρ,a∼π?(·|s)

[
Q(t)(s, a)− w(t)

? · φs,a
]
− Es∼d?ρ,a′∼π(t)(·|s)

[
Q(t)(s, a′)− w(t)

? · φs,a′
]

≤
√
Es∼d?ρ,a∼π?(·|s)

(
Q(t)(s, a)− w(t)

? · φs,a
)2

+

√
Es∼d?ρ,a′∼π(t)(·|s)

(
Q(t)(s, a′)− w(t)

? · φs,a′
)2

≤ 2

√
|A|Es∼d?ρ,a∼UnifA

[ (
Q(t)(s, a)− w(t)

? · φs,a
)2 ]

= 2

√
|A|L(w

(t)
? ; θ(t), d?).

where we have used the definition of d? and L(w
(t)
? ; θ(t), d?) in the last step. Using following crude upper bound,

L(w
(t)
? ; θ(t), d?) ≤

∥∥∥ d?
d(t)

∥∥∥
∞
L(w

(t)
? ; θ(t), d(t)) ≤ 1

1− γ
∥∥∥d?
ν

∥∥∥
∞
L(w

(t)
? ; θ(t), d(t)),

(where the last step uses the defintion of d(t), see Equation 0.7), we have that:

Es∼d?ρ,a∼π?(·|s)

[
A(t)(s, a)− w(t)

? · ∇θ log π(t)(a|s)
]
≤ 2

√
|A|

1− γ
∥∥∥d?
ν

∥∥∥
∞
L(w

(t)
? ; θ(t), d(t)). (0.9)

For the second term, let us now show that:

Es∼d?ρ,a∼π?(·|s)

[(
w

(t)
? − w(t)

)
· ∇θ log π(t)(a|s)

]
≤ 2

√
|A|κ
1− γ

(
L(w(t); θ(t), d(t))− L(w

(t)
? ; θ(t), d(t))

)
(0.10)

To see this, first observe that a similar argument to the above leads to:

Es∼d?ρ,a∼π?(·|s)

[(
w

(t)
? − w(t)

)
· ∇θ log π(t)(a|s)

]
= Es∼d?ρ,a∼π?(·|s)

[(
w

(t)
? − w(t)

)
· φs,a

]
− Es∼d?ρ,a′∼π(t)(·|s)

[(
w

(t)
? − w(t)

)
· φs,a′

]
≤ 2

√
|A|Es,a∼d?

[ ((
w

(t)
? − w(t)

)
· φs,a

)2 ]
= 2

√
|A| · ‖w(t)

? − w(t)‖2Σd? ,

where we use the notation ‖x‖2M := x>Mx for a matrix M and a vector x. From the definition of κ,

‖w(t)
? − w(t)‖2Σd? ≤ κ‖w

(t)
? − w(t)‖2Σν ≤

κ

1− γ ‖w
(t)
? − w(t)‖2Σ

d(t)

using that (1 − γ)ν ≤ dπ
(t)

ν (see (0.7)). Due to that w(t)
? minimizes L(w; θ(t), d(t)) over the setW := {w : ‖w‖2 ≤

W}, for any w ∈ W the first-order optimality conditions for w(t)
? imply that:

(w − w(t)
? ) · ∇L(w

(t)
? ; θ(t), d(t)) ≥ 0.
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Therefore, for any w ∈ W ,

L(w; θ(t), d(t))− L(w
(t)
? ; θ(t), d(t))

= Es,a∼d(t)
[(
w · φ(s, a)− w? · φ(s, a) + w? · φ(s, a)−Q(t)(s, a)

)2]− L(w
(t)
? ; θ(t), d(t))

= Es,a∼d(t)
[(
w · φ(s, a)− w? · φ(s, a)

)2]
+ 2(w − w?)Es,a∼d(t)

[
φ(s, a)

(
w? · φ(s, a)−Q(t)(s, a)

)]
= ‖w − w(t)

? ‖2Σ
d(t)

+ (w − w(t)
? ) · ∇L(w

(t)
? ; θ(t), d(t))

≥ ‖w − w(t)
? ‖2Σ

d(t)
.

Noting that w(t) ∈ W by construction in Algorithm 0.8 yields the claimed bound on the second term in (0.10).

Using the bounds on the first and second terms in (0.9) and (0.10), along with concavity of the square root function,
we have that:

errt ≤ 2

√
|A|

1− γ
∥∥∥d?
ν

∥∥∥
∞
L(w

(t)
? ; θ(t), d(t)) + 2

√
|A|κ
1− γ

(
L(w(t); θ(t), d(t))− L(w

(t)
? ; θ(t), d(t))

)
.

The proof is completed by substitution and using our assumptions on εstat and εbias.

13.5 Q-NPG Sample Complexity

To be added...

13.6 Bibliographic Remarks and Further Readings

The notion of compatible function approximation was due to [Sutton et al., 1999], which also proved the claim in
Lemma 13.1. The close connection of the NPG update rule to compatible function approximation (Lemma 0.3) was
noted in [Kakade, 2001].

The regret lemma (Lemma 13.3) for the NPG analysis has origins in the online regret framework in changing MDPs [Even-
Dar et al., 2009]. The convergence rates in this chapter are largely derived from [Agarwal et al., 2020d]. The Q-NPG
algorithm for the log-linear policy classes is essentially the same algorithm as POLITEX [Abbasi-Yadkori et al., 2019],
with a distinction that it is important to use a state action measure over the initial distribution. The analysis and error
decomposition of Q-NPG is from [Agarwal et al., 2020d], which has a more general analysis of NPG with function
approximation under the regret lemma. This more general approach also permits the analysis of neural policy classes,
as shown in [Agarwal et al., 2020d]. Also, [Liu et al., 2019] provide an analysis of the TRPO algorithm [Schulman
et al., 2015] (essentially the same as NPG) for neural network parameterizations in the somewhat restrictive linearized
“neural tangent kernel” regime.
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Chapter 14

CPI, TRPO, and More

In this chapter, we consider conservative policy iteration (CPI) and trust-region constrained policy optimization
(TRPO). Both CPI and TRPO can be understood as making small incremental update to the policy by forcing that
the new policy’s state action distribution is not too far away from the current policy’s. We will see that CPI achieves
that by forming a new policy that is a mixture of the current policy and a local greedy policy, while TRPO forcing
that by explicitly adding a KL constraint (over polices’ induced trajectory distributions space) in the optimization
procedure. We will show that TRPO gives an equivalent update procedure as Natural Policy Gradient.

Along the way, we discuss the benefit of incremental policy update, by contrasting it to another family of policy update
procedure called Approximate Policy Iteration (API), which performs local greedy policy search and could potentially
lead to abrupt policy change. We show that API in general fails to converge or make local improvement, unless under
a much stronger concentrability ratio assumption.

The algorithm and analysis of CPI is adapted from the original one in [Kakade and Langford, 2002], and the we follow
the presentation of TRPO from [Schulman et al., 2015], while making a connection to the NGP algorithm.

14.1 Conservative Policy Iteration

As the name suggests, we will now describe a more conservative version of the policy iteration algorithm, which
shifts the next policy away from the current policy with a small step size to prevent drastic shifts in successive state
distributions.

We consider the discounted MDP here {S,A, P, r, γ, ρ} where ρ is the initial state distribution. Similar to Policy
Gradient Methods, we assume that we have a restart distribution µ (i.e., the µ-restart setting). Throughout this section,
for any policy π, we denote dπµ as the state-action visitation starting from s0 ∼ µ instead of ρ, and dπ the state-action
visitation starting from the true initial state distribution ρ, i.e., s0 ∼ ρ. Similarly, we denote V πµ as expected discounted
total reward of policy π starting at µ, while V π as the expected discounted total reward of π with ρ as the initial state
distribution. We assume A is discrete but S could be continuous.

CPI is based on the concept of Reduction to Supervised Learning. Specifically we will use the Approximate Greedy
Policy Selector defined in Chapter 4 (Definition ??). We recall the definition of the ε-approximate Greedy Policy
Selector Gε(π,Π, µ) below. Given a policy π, policy class Π, and a restart distribution µ, denote π̂ = Gε(π,Π, µ), we
have that:

Es∼dπµA
π(s, π̂(s)) ≥ max

π̃∈Π
Es∼dπµA

π(s, π̃(s))− ε.
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Recall that in Chapter 4 we explained two approach to implement such approximate oracle: one with a reduction to
classification oracle, and the other one with a reduction to regression oracle.

14.1.1 The CPI Algorithm

CPI, summarized in Alg. 8, will iteratively generate a sequence of policies πi. Note we use πα = (1−α)π+απ′ to refer
to a randomized policy which at any state s, chooses an action according to π with probability 1− α and according to
π′ with probability α. The greedy policy π′ is computed using the ε-approximate greedy policy selector Gε(πt,Π, µ).
The algorithm is terminate when there is no significant one-step improvement over πt, i.e., Es∼dπtµ A

πt(s, π′(s))) ≤ ε.

Algorithm 8 Conservative Policy Iteration (CPI)
Input: Initial policy π0 ∈ Π, accuracy parameter ε.

1: for t = 0, 1, 2 . . . do
2: π′ = Gε(πt,Π, µ)

3: if Es∼dπtµ A
πt(s, π′(s)) ≤ ε then

4: Return πt

5: end if
6: Update πt+1 = (1− α)πt + απ′

7: end for

The main intuition behind the algorithm is that the stepsize α controls the difference between state distributions of πt

and πt+1. Let us look into the performance difference lemma to get some intuition on this conservative update. From
PDL, we have:

V π
t+1

µ − V πtµ =
1

1− γEs∼dπt+1
µ

Aπ
t

(s, πt+1(s)) =
α

1− γEs∼dπt+1
µ

Aπ
t

(s, π′(s)),

where the last equality we use the fact that πt+1 = (1− α)πt + απ′ and Aπ
t

(s, πt(s)) = 0 for all s. Thus, if we can
search for a policy π′ ∈ Π that maximizes Es∼dπt+1

µ
Aπ

t

(s, π′(s)) and makes Es∼dπt+1
µ

Aπ
t

(s, π′(s)) > 0, then we

can guarantee policy improvement. However, at episode t, we do not know the state distribution of πt+1 and all we
have access to is dπ

t

µ . Thus, we explicitly make the policy update procedure to be conservative such that dπ
t

µ and the
new policy’s distribution dπ

t+1

µ is guaranteed to be not that different. Thus we can hope that Es∼dπt+1
µ

Aπ
t

(s, π′(s)) is

close to Es∼dπtµ A
πt(s, π′(s)), and the latter is something that we can manipulate using the greedy policy selector.

Below we formalize the above intuition and show that with small enough α, we indeed can ensure monotonic policy
improvement.

We start from the following lemma which shows that πt+1 and πt are close to each other in terms of total variation
distance at any state, and dπ

t+1

µ and dπ
t

µ are close as well.

Lemma 14.1 (Similar Policies imply similar state visitations). Consider any t, we have that:∥∥πt+1(·|s)− πt(·|s)
∥∥

1
≤ 2α,∀s;

Further, we have: ∥∥∥dπt+1

µ − dπtµ
∥∥∥

1
≤ 2αγ

1− γ .
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Proof: The first claim in the above lemma comes from the definition of policy update:∥∥πt+1(·|s)− πt(·|s)
∥∥

1
= α

∥∥πt(·|s)− π′(·|s)∥∥
1
≤ 2α.

Denote Pπh as the state distribution resulting from π at time step h with µ as the initial state distribution. We consider
bounding ‖Pπt+1

h − Pπth ‖1 with h ≥ 1.

Pπ
t+1

h (s′)− Pπ
t

h (s′) =
∑
s,a

(
Pπ

t+1

h−1 (s)πt+1(a|s)− Pπ
t

h−1(s)πt(a|s)
)
P (s′|s, a)

=
∑
s,a

(
Pπ

t+1

h−1 (s)πt+1(a|s)− Pπ
t+1

h−1 (s)πt(a|s) + Pπ
t+1

h−1 (s)πt(a|s)− Pπ
t

h−1(s)πt(a|s)
)
P (s′|s, a)

=
∑
s

Pπ
t+1

h−1 (s)
∑
a

(
πt+1(a|s)− πt(a|s)

)
P (s′|s, a)

+
∑
s

(
Pπ

t+1

h−1 (s)− Pπ
t

h−1(s)
)∑

a

πt(a|s)P (s′|s, a).

Take absolute value on both sides, we get:∑
s′

∣∣∣Pπt+1

h (s′)− Pπ
t

h (s′)
∣∣∣ ≤∑

s

Pπ
t+1

h−1 (s)
∑
a

∣∣πt+1(a|s)− πt(a|s)
∣∣∑
s′

P (s′|s, a)

+
∑
s

∣∣∣Pπt+1

h−1 (s)− Pπ
t

h−1(s)
∣∣∣∑
s′

∑
a

πt(a|s)P (s′|s, a)

≤ 2α+ ‖Pπt+1

h−1 − Pπ
t

h−1‖1 ≤ 4α+ ‖Pπt+1

h−2 − Pπ
t

h−2‖1 = 2hα.

Now use the definition of dπµ, we have:

dπ
t+1

µ − dπtµ = (1− γ)

∞∑
h=0

γh
(
Pπ

t+1

h − Pπ
t

h

)
.

Add `1 norm on both sides, we get: ∥∥∥dπt+1

µ − dπtµ
∥∥∥

1
≤ (1− γ)

∞∑
h=0

γh2hα

It is not hard to verify that
∑∞
h=0 γ

hh = γ
(1−γ)2 . Thus, we can conclude that:∥∥∥dπt+1

µ − dπtµ
∥∥∥

1
≤ 2αγ

1− γ .

The above lemma states that if πt+1 and πt are close in terms of total variation distance for every state, then the
total variation distance between the resulting state visitations from πt+1 and πt will be small up to a effective horizon
1/(1− γ) amplification.

The above lemma captures the key of the conservative policy update. Via the conservative policy update, we make
sure that dπ

t+1

µ and dπ
t

µ are close to each other in terms of total variation distance. Now we use the above lemma to
show a monotonic policy improvement.

Theorem 14.2 (Monotonic Improvement in CPI). Consider any episode t. Denote A = Es∼dπtµ A
πt(s, π′(s)). We

have:

V π
t+1

µ − V πtµ ≥
α

1− γ

(
A− 2αγ

(1− γ)2

)
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Set α = A(1−γ)2

4γ , we get:

V π
t+1

µ − V πtµ ≥
A2(1− γ)

8γ
.

The above lemma shows that as long as we still have positive one-step improvement, i.e., A > 0, then we guarantee
that πt+1 is strictly better than πt.

Proof: Via PDL, we have:

V π
t+1

µ − V πtµ =
1

1− γEs∼dπt+1
µ

αAπ
t

(s, π′(s)).

Recall Lemma 14.1, we have:

(1− γ)
(
V π

t+1

µ − V πtµ
)

= Es∼dπtµ αA
πt(s, π′(s)) + Es∼dπt+1

µ
αAπ

t

(s, π′(s))− Es∼dπtµ αA
πt(s, π′(s))

≥ Es∼dπtµ αA
πt(s, π′(s))− α sup

s,a,π
|Aπ(s, a)|‖dπtµ − dπ

t+1

µ ‖1

≥ Es∼dπtµ αA
πt(s, π′(s))− α

1− γ ‖d
πt

µ − dπ
t+1

µ ‖1

≥ Es∼dπtµ αA
πt(s, π′(s))− 2α2γ

(1− γ)2
= α

(
A− 2αγ

(1− γ)2

)
where the first inequality we use the fact that for any two distributions P1 and P2 and any function f , |Ex∼P1

f(x) −
Ex∼P2f(x)| ≤ supx |f(x)|‖P1 − P2‖1, for the second inequality, we use the fact that |Aπ(s, a)| ≤ 1/(1− γ) for any
π, s, a, and the last inequality uses Lemma 14.1.

For the second part of the above theorem, note that we want to maximum the policy improvement as much as possible
by choosing α. So we can pick α which maximizes α(A − 2αγ/(1 − γ)2) . This gives us the α we claimed in the
lemma. Plug in α back into α(A− 2αγ/(1− γ)2), we conclude the second part of the theorem.

The above theorem indicates that with the right choice of α, we guarantee that the policy is making improvement as
long as A > 0. Recall the termination criteria in CPI where we terminate CPI when A ≤ ε. Putting these results
together, we obtain the following overall convergence guarantee for the CPI algorithm.

Theorem 14.3 (Local optimality of CPI). Algorithm 8 terminates in at most 8γ/ε2 steps and outputs a policy πt

satisfying maxπ∈Π Es∼dπtµ A
πt(s, π(s)) ≤ 2ε.

Proof: Note that our reward is bounded in [0, 1] which means that V πµ ∈ [0, 1/(1 − γ)]. Note that we have shown in

Theorem 14.2, every iteration t, we have policy improvement at least A2(1−γ)
8γ , where recall A at episode t is defined

as A = Es∼dπtµ A
πt(s, π′(s)). If the algorithm does not terminate at episode t, then we guarantee that:

V π
t+1

µ ≥ V πtµ +
ε2(1− γ)

8γ

Since V πµ is upper bounded by 1/(1− γ), so we can at most make improvement 8γ/ε2 many iterations.

Finally, recall that ε-approximate greedy policy selector π′ = Gε(πt,Π, µ), we have:

max
π∈Π

Es∼dπtµ A
πt(s, π(s)) ≤ Es∼dπtµ A

πt(s, π′(s)) + ε ≤ 2ε
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This concludes the proof.

Theorem 14.3 can be viewed as a local optimality guarantee in a sense. It shows that when CPI terminates, we cannot
find a policy π ∈ Π that achieves local improvement over the returned policy more than ε. However, this does not
necessarily imply that the value of π is close to V ?. However, similar to the policy gradient analysis, we can turn this
local guarantee into a global one when the restart distribution µ covers dπ

?

. We formalize this intuition next.

Theorem 14.4 (Global optimality of CPI). Upon termination, we have a policy π such that:

V ? − V π ≤ 2ε+ εΠ
(1− γ)2

∥∥∥∥dπ?µ
∥∥∥∥
∞
,

where εΠ := Es∼dπµ [maxa∈AA
π(s, a)]−maxπ∈Π Es∼dπµ [Aπ(s, π(s))].

In other words, if our policy class is rich enough to approximate the policy maxa∈AA
π(s, a) under dπµ, i.e., εΠ is

small, and µ covers dπ
?

in a sense that
∥∥∥dπ?µ ∥∥∥∞ ≤ ∞, CPI guarantees to find a near optimal policy.

Proof: By the performance difference lemma,

V ? − V π =
1

1− γEs∼dπ
?Aπ(s, π?(s))

≤ 1

1− γEs∼dπ
? max
a∈A

Aπ(s, a)

≤ 1

1− γ

∥∥∥∥dπ∗dπµ
∥∥∥∥
∞

Es∼dπµ max
a∈A

Aπ(s, a)

≤ 1

(1− γ)2

∥∥∥∥dπ∗µ
∥∥∥∥
∞

Es∼dπµ max
a∈A

Aπ(s, a)

=≤ 1

(1− γ)2

∥∥∥∥dπ∗µ
∥∥∥∥
∞

[
max
π̂∈Π

Es∼dπµA
π(s, π̂(s))−max

π̂∈Π
Es∼dπµA

π(s, π̂(s)) + Es∼dπµ max
a∈A

Aπ(s, a)

]
≤ 1

(1− γ)2

∥∥∥∥dπ∗µ
∥∥∥∥
∞

(2ε+ εΠ) ,

where the second inequality holds due to the fact that maxaA
π(s, a) ≥ 0, the third inequality uses the fact that

dπµ(s) ≥ (1− γ)µ(s) for any s and π, and the last inequality uses the definition εΠ and Theorem 14.3.

It is informative to contrast CPI and policy gradient algorithms due to the similarity of their guarantees. Both provide
local optimality guarantees. For CPI, the local optimality always holds, while for policy gradients it requires a smooth
value function as a function of the policy parameters. If the distribution mismatch between an optimal policy and the
output of the algorithm is not too large, then both algorithms further yield a near optimal policy. The similarities are
not so surprising. Both algorithms operate by making local improvements to the current policy at each iteration, by
inspecting its advantage function. The changes made to the policy are controlled using a stepsize parameter in both
the approaches. It is the actual mechanism of the improvement which differs in the two cases. Policy gradients assume
that the policy’s reward is a differentiable function of the parameters, and hence make local improvements through
gradient ascent. The differentiability is certainly an assumption and does not necessarily hold for all policy classes.
An easy example is when the policy itself is not an easily differentiable function of its parameters. For instance, if the
policy is parametrized by regression trees, then performing gradient updates can be challenging.

In CPI, on the other hand, the basic computational primitive required on the policy class is the ability to maximize
the advantage function relative to the current policy. Notice that Algorithm 8 does not necessarily restrict to a policy
class, such as a set of parametrized policies as in policy gradients. Indeed, due to the reduction to supervised learning
approach (e.g., using the weighted classification oracle CO), we can parameterize policy class via decision tree, for
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instance. This property makes CPI extremely attractive. Any policy class over which efficient supervised learning
algorithms exist can be adapted to reinforcement learning with performance guarantees.

A second important difference between CPI and policy gradients is in the notion of locality. Policy gradient updates
are local in the parameter space, and we hope that this makes small enough changes to the state distribution that the
new policy is indeed an improvement on the older one (for instance, when we invoke the performance difference
lemma between successive iterates). While this is always true in expectation for correctly chosen stepsizes based on
properties of stochastic gradient ascent on smooth functions, the variance of the algorithm and lack of robustness to
suboptimal stepsizes can make the algorithm somewhat finicky. Indeed, there are a host of techniques in the literature
to both lower the variance (through control variates) and explicitly control the state distribution mismatch between
successive iterates of policy gradients (through trust region techniques). On the other hand, CPI explicitly controls the
amount of perturbation to the state distribution by carefully mixing policies in a manner which does not drastically
alter the trajectories with high probability. Indeed, this insight is central to the proof of CPI, and has been instrumental
in several follow-ups, both in the direct policy improvement as well as policy gradient literature.

14.2 Trust Region Methods and Covariant Policy Search

So far we have seen policy gradient methods and CPI which all uses a small step-size to ensure incremental update
in policies. Another popular approach for incremental policy update is to explicitly forcing small change in policies’
distribution via a trust region constraint. More specifically, let us go back to the general policy parameterization πθ. At
iteration t with the current policy πθt , we are interested in the following local trust-region constrained optimization:

max
θ

E
s∼dπθtµ

Ea∼πθ(·|s)A
πθt (s, a)

s.t., KL
(

Prπ
θt

µ ||Prπθµ

)
≤ δ,

where recall Prπµ(τ) is the trajectory distribution induced by π starting at s0 ∼ µ, and KL(P1||P2) are KL-divergence
between two distribution P1 and P2. Namely we explicitly perform local policy search with a constraint forcing the
new policy not being too far away from Pr

πθt
µ in terms of KL divergence.

As we are interested in small local update in parameters, we can perform sequential quadratic programming here, i.e.,
we can further linearize the objective function at θt and quadratize the KL constraint at θt to form a local quadratic
programming:

max
θ

〈
E
s∼dπθtµ

Ea∼πθt (·|s)∇θ lnπθt(a|s)Aπ
θt

(s, a), θ
〉

(0.1)

s.t., 〈∇θKL
(

Prπ
θt

µ ||Prπθµ

)
|θ=θt , θ − θt〉+

1

2
(θ − θt)>

(
∇2
θKL

(
Prπ

θt

µ ||Prπθµ

)
|θ=θt

)
(θ − θt) ≤ δ, (0.2)

where we denote ∇2KL|θ=θt as the Hessian of the KL constraint measured at θt. Note that KL divergence is not
a valid metric as it is not symmetric. However, its local quadratic approximation can serve as a valid local distance
metric, as we prove below that the Hessian ∇2KL|θ=θt is a positive semi-definite matrix. Indeed, we will show that
the Hessian of the KL constraint is exactly equal to the fisher information matrix, and the above quadratic programming
exactly reveals a Natural Policy Gradient update. Hence Natural policy gradient can also be interpreted as performing
sequential quadratic programming with KL constraint over policy’s trajectory distributions.

To match to the practical algorithms in the literature (e.g., TRPO), below we focus on episode finite horizon setting
again (i.e., an MDP with horizon H).
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Claim 14.5. Consider a finite horizon MDP with horizon H . Consider any fixed θt. We have:

∇θKL
(

Prπ
θt

µ ||Prπθµ

)
|θ=θt = 0,

∇2
θKL

(
Prπ

θt

µ ||Prπθµ

)
|θ=θt = HEs,a∼dπθt∇ lnπθt(a|s) (∇ lnπθt(a|s))> .

Proof: We first recall the trajectory distribution in finite horizon setting.

Prπµ(τ) = µ(s0)

H−1∏
h=0

π(ah|sh)P (sh+1|sh, ah).

We first prove that the gradient of KL is zero. First note that:

KL
(

Prπ
θt

µ ||Prπθµ

)
=
∑
τ

Prπ
θt

µ (τ) ln
Prπ

θt

µ (τ)

Prπ
θ

µ (τ)

=
∑
τ

Prπ
θt

µ (τ)

(
H−1∑
h=0

ln
πθt(ah|sh)

πθ(ah|sh)

)
=

H−1∑
h=0

E
sh,ah∼P

πθt
h

ln
πθt(ah|sh)

πθ(ah|sh)
.

Thus, for∇θKL
(

Prπ
θt

µ ||Prπθµ

)
, we have:

∇KL
(

Prπ
θt

µ ||Prπθµ

)
|θ=θt =

H−1∑
h=0

E
sh,ah∼P

πθt
h

−∇ lnπθt(ah|sh)

= −
H−1∑
h=0

E
sh∼P

πθt
h

Eah∼πθt (·|sh)∇ lnπθt(ah|sh) = 0,

where we have seen the last step when we argue the unbiased nature of policy gradient with an action independent
baseline.

Now we move to the Hessian.

∇2KL
(

Prπ
θt

µ ||Prπθµ

)
|θ=θt = −

H−1∑
h=0

E
sh,ah∼P

πθt
h

∇2 lnπθ(ah|sh)|θ=θt

= −
H−1∑
h=0

E
sh,ah∼P

πθt
h

(
∇
(∇πθ(a|s)
πθ(a|s)

))

= −
H−1∑
h=0

E
sh,ah∼P

πθt
h

(∇2πθ(ah|sh)

πθ(ah|sh)
− ∇πθ(ah|sh)∇πθ(ah|sh)>

π2
θ(ah|sh)

)

=

H−1∑
h=0

E
sh,ah∼P

πθt
h

∇θ lnπθ(ah|sh)∇θ lnπθ(ah|sh)>,

where in the last equation we use the fact that E
sh,ah∼P

πθt
h

∇2πθ(ah|sh)
πθ(ah|sh) = 0.

The above claim shows that a second order taylor expansion of the KL constraint over trajectory distribution gives a
local distance metric at θt:

(θ − θt)Fθt(θ − θt),
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where again Fθt := HEs,a∼dπθt∇ lnπθt(a|s) (∇ lnπθt(a|s))> is proportional to the fisher information matrix. Note
that Fθt is a PSD matrix and thus d(θ, θt) := (θ − θt)Fθt(θ − θt) is a valid distance metric. By sequential quadratic
programming, we are using local geometry information of the trajectory distribution manifold induced by the param-
eterization θ, rather the naive Euclidean distance in the parameter space. Such a method is sometimes referred to as
Covariant Policy Search, as the policy update procedure will be invariant to linear transformation of parameterization
(See Section 14.3 for further discussion).

Now using the results from Claim 14.5, we can verify that the local policy optimization procedure in Eq. 0.2 exactly
recovers the NPG update, where the step size is based on the trust region parameter δ. Denote ∆ = θ − θt, we have:

max
∆
〈∆,∇θV πθt 〉 ,

s.t.,∆>Fθt∆
> ≤ δ,

which gives the following update procedure:

θt+1 = θt + ∆ = θt +

√
δ

(∇V πθt )>F−1
θt
∇V πθt · F

−1
θt
∇V πθt ,

where note that we use the self-normalized learning rate computed using the trust region parameter δ.

14.2.1 Proximal Policy Optimization

Here we consider an `∞ style trust region constraint:

max
θ

E
s∼dπθtµ

Ea∼πθ(·|s)A
πθt (s, a) (0.3)

s.t., sup
s

∥∥πθ(·|s)− πθt(·|s)∥∥
tv
≤ δ, (0.4)

Namely, we restrict the new policy such that it is close to πθt at every state s under the total variation distance. Recall
the CPI’s update, CPI indeed makes sure that the new policy will be close the old policy at every state. In other words,
the new policy computed by CPI is a feasible solution of the constraint Eq. 0.4, but is not the optimal solution of
the above constrained optimization program. Also one downside of the CPI algorithm is that one needs to keep all
previous learned policies around, which requires large storage space when policies are parameterized by large deep
neural networks.

Proximal Policy Optimization (PPO) aims to directly optimize the objective Eq. 0.3 using multiple steps of gradient
updates, and approximating the constraints Eq. 0.4 via a clipping trick. We first rewrite the objective function using
importance weighting:

max
θ

E
s∼dπθtµ

Ea∼πθt (·|s)
πθ(a|s)
πθt(·|s)A

πθt (s, a), (0.5)

where we can easily approximate the expectation E
s∼dπθtµ

Ea∼πθt (·|s) via finite samples s ∼ dπθt , a ∼ πθt(·|s).

To make sure πθ(a|s) and πθt(a|s) are not that different, PPO modifies the objective function by clipping the density
ratio πθ(a|s) and πθt(a|s):

L(θ) := E
s∼dπθtµ

Ea∼πθt (·|s) min

{
πθ(a|s)
πθt(·|s)A

πθt (s, a), clip
(
πθ(a|s)
πθt(·|s) ; 1− ε, 1 + ε

)
Aπ

θt
(s, a)

}
, (0.6)
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where clip (x; 1− ε, 1 + ε) =


1− ε x ≤ 1− ε
1 + ε x ≥ 1 + ε

x else
. The clipping operator ensures that for πθ, at any state action pair

where πθ(a|s)/πθt(a|s) 6∈ [1− ε, 1 + ε], we get zero gradient, i.e., ∇θ
[
clip

(
πθ(a|s)
πθt (·|s) ; 1− ε, 1 + ε

)
Aπ

θt
(s, a)

]
= 0.

The outer min makes sure the objective function L(θ) is a lower bound of the original objective. PPO then proposes
to collect a dataset (s, a) with s ∼ dπ

θt

µ and a ∼ πθt(·|s), and then perform multiple steps of mini-batch stochastic
gradient ascent on L(θ).

One of the key difference between PPO and other algorithms such as NPG is that PPO targets to optimizes objective
Eq. 0.5 via multiple steps of mini-batch stochastic gradient ascent with mini-batch data from dπ

θt

µ and πθt , while
algorithm such as NPG indeed optimizes the first order taylor expansion of Eq. 0.5 at θt, i.e.,

max
θ

〈
(θ − θt), E

s,a∼dπθtµ
∇θ lnπθt(a|s)Aπθt (s, a)

〉
,

upper to some trust region constraints (e.g., ‖θ − θt‖2 ≤ δ in policy gradient, and ‖θ − θt‖2Fθt ≤ δ for NPG ).

14.3 Bibliographic Remarks and Further Readings

The analysis of CPI is adapted from the original one in [Kakade and Langford, 2002]. There have been a few further
interpretations of CPI. One interesting perspective is that CPI can be treated as a boosting algorithm [Scherrer and
Geist, 2014].

More generally, CPI and NPG are part of family of incremental algorithms, including Policy Search by Dynamic
Programming (PSDP) [Bagnell et al., 2004] and MD-MPI [Geist et al., 2019]. PSDP operates in a finite horizon
setting and optimizes a sequence of time-dependent policies; from the last time step to the first time step, every
iteration of, PSDP only updates the policy at the current time step while holding the future policies fixed — thus
making incremental update on the policy. See [Scherrer, 2014] for more a detailed discussion and comparison of
some of these approaches. Mirror Descent-Modified Policy Iteration (MD-MPI) algorithm [Geist et al., 2019] is a
family of actor-critic style algorithms which is based on regularization and is incremental in nature; with negative
entropy as the Bregman divergence (for the tabular case), MD-MPI recovers the NPG the tabular case (for the softmax
parameterization).

Broadly speaking, these incremental algorithms can improve upon the stringent concentrability conditions for approx-
imate value iteration methods, presented in Chapter 4. Scherrer [2014] provide a more detailed discussion of bounds
which depend on these density ratios. As discussed in the last chapter, the density ratio for NPG can be interpreted as
a factor due to transfer learning to a single, fixed distribution.

The interpretation of NPG as Covariant Policy Search is due to [Bagnell and Schneider, 2003], as the policy update
procedure will be invariant to linear transformations of the parameterization; see [Bagnell and Schneider, 2003] for a
more detailed discussion on this.

The TRPO algorithm is due to [Schulman et al., 2015]. The original TRPO analysis provides performance guarantees,
largely relying on a reduction to the CPI guarantees. In this Chapter, we make a sharper connection of TRPO to NPG,
which was subsequently observed by a number of researchers; this connection provides a sharper analysis for the
generalization and approximation behavior of TRPO (e.g. via the results presented in Chapter 13). In practice, a
popular variant is the Proximal Policy Optimization (PPO) algorithm [Schulman et al., 2017].
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Part 4

Further Topics
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Chapter 15

Imitation Learning

In this chapter, we study imitation learning. Unlike the Reinforcement Learning setting, in Imitation Learning, we do
not have access to the ground truth reward function (or cost function), but instead, we have expert demonstrations. We
often assume that the expert is a policy that approximately optimizes the underlying reward (or cost) functions. The
goal is to leverage the expert demonstrations to learn a policy that performs as good as the expert.

We consider three settings of imitation learning: (1) pure offline where we only have expert demonstrations and no
more real world interaction is allowed, (2) hybrid where we have expert demonstrations, and also is able to interact
with the real world (e.g., have access to the ground truth transition dynamics); (3) interactive setting where we have
an interactive expert and also have access to the underlying reward (cost) function.

15.1 Setting

We will focus on finite horizon MDPsM = {S,A, r, µ, P,H} where r is the reward function but is unknown to the
learner. We represent the expert as a closed-loop policy π? : S 7→ ∆(A). For analysis simplicity, we assume the
expert π? is indeed the optimal policy of the original MDPM with respect to the ground truth reward r. Again, our
goal is to learn a policy π̂ : S 7→ ∆(A) that performs as well as the expert, i.e., V π̂ needs to be close to V ?, where V π

denotes the expected total reward of policy π under the MDPM. We denote dπ as the state-action visitation of policy
π underM.

We assume we have a pre-collected expert dataset in the format of {s?i , a?i }Mi=1 where s?i , a
?
i ∼ dπ

?

.

15.2 Offline IL: Behavior Cloning

We study offline IL here. Specifically, we study the classic Behavior Cloning algorithm.

We consider a policy class Π = {π : S 7→ ∆(A)}. We consider the following realizable assumption.

Assumption 15.1. We assume Π is rich enough such that π? ∈ Π.

For analysis simplicity, we assume Π is discrete. But our sample complexity will only scale with respect to ln(|Π|).

Behavior cloning is one of the simplest Imitation Learning algorithm which only uses the expert data D? and does not
require any further interaction with the MDP. It computes a policy via a reduction to supervised learning. Specifically,
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we consider a reduction to Maximum Likelihood Estimation (MLE):

Behavior Cloning (BC): π̂ = argmaxπ∈Π

N∑
i=1

lnπ(a?i |s?i ). (0.1)

Namely we try to find a policy from Π that has the maximum likelihood of fitting the training data. As this is a
reduction to MLE, we can leverage the existing classic analysis of MLE (e.g., Chapter 7 in [Geer and van de Geer,
2000]) to analyze the performance of the learned policy.

Theorem 15.2 (MLE Guarantee). Consider the MLE procedure (Eq. 0.1). With probability at least 1− δ, we have:

Es∼dπ? ‖π̂(·|s)− π?(·|s)‖2tv ≤
2 ln (|Π|/δ)

M
.

We refer readers to Section E, Theorem 21 in [Agarwal et al., 2020b] for detailed proof of the above MLE guarantee.

Now we can transfer the average divergence between π̂ and π? to their performance difference V π̂ and V π
?

.

One thing to note is that BC only ensures that the learned policy π̂ is close to π? under dπ
?

. Outside of dπ
?

’s support,
we have no guarantee that π̂ and π? will be close to each other. The following theorem shows that a compounding
error occurs when we study the performance of the learned policy V p̂i.

Theorem 15.3 (Sample Complexity of BC). With probability at least 1− δ, BC returns a policy π̂ such that:

V ? − V π̂ ≤ 3

(1− γ)2

√
ln(|Π|/δ)

M
.

Proof: We start with the performance difference lemma and the fact that Ea∼π(·|s)A
π(s, a) = 0:

(1− γ)
(
V ? − V π̂

)
= Es∼dπ?Ea∼π?(·|s)A

π̂(s, a)

= Es∼dπ?Ea∼π?(·|s)A
π̂(s, a)− Es∼dπ?Ea∼π̂(·|s)A

π̂(s, a)

≤ Es∼dπ?
1

1− γ ‖π
?(·|s)− π̂(·|s)‖1

≤ 1

1− γ

√
Es∼dπ? ‖π?(·|s)− π̂(·|s)‖21

=
1

1− γ

√
4Es∼dπ? ‖π?(·|s)− π̂(·|s)‖2tv.

where we use the fact that sups,a,π |Aπ(s, a)| ≤ 1
1−γ , and the fact that (E[x])2 ≤ E[x2].

Using Theorem 15.2 and rearranging terms conclude the proof.

For Behavior cloning, from the supervised learning error the quadratic polynomial dependency on the effect horizon
1/(1− γ) is not avoidable in worst case [Ross and Bagnell, 2010]. This is often referred as the distribution shift issue
in the literature. Note that π̂ is trained under dπ

?

, but during execution, π̂ makes prediction on states that are generated
by itself, i.e., dπ̂ , instead of the training distribution dπ

?

.

15.3 The Hybrid Setting: Statistical Benefit and Algorithm

The question we want to answer here is that if we know the underlying MDP’s transition P (but the reward is still
unknown), can we improve Behavior Cloning? In other words:
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what is the benefit of the known transition in addition to the expert demonstrations?

Instead of a quadratic dependency on the effective horizon, we should expect a linear dependency on the effective
horizon. The key benefit of the known transition is that we can test our policy using the known transition to see how
far away we are from the expert’s demonstrations, and then use the known transition to plan to move closer to the
expert demonstrations.

In this section, we consider a statistical efficient, but computationally intractable algorithm, which we use to demon-
strate that informationally theoretically, by interacting with the underlying known transition, we can do better than
Behavior Cloning. In the next section, we will introduce a popular and computationally efficient algorithm Maximum
Entropy Inverse Reinforcement Learning (MaxEnt-IRL) which operates under this setting (i.e., expert demonstrations
with a known transition).

We start from the same policy class Π as we have in the BC algorithm, and again we assume realizability (Assump-
tion 15.1) and Π is discrete.

Since we know the transition P , information theoretically, for any policy π, we have dπ available (though it is compu-
tationally intractable to compute dπ for large scale MDPs). We have (s?i , a

?
i )
M
i=1 ∼ dπ

?

.

Below we present an algorithm which we called Distribution Matching with Scheffé Tournament (DM-ST).

For any two policies π and π′, we denote fπ,π′ as the following witness function:

fπ,π′ := argmaxf :‖f‖∞≤1

[
Es,a∼dπf(s, a)− Es,a∼dπ′ f(s, a)

]
.

We denote the set of witness functions as:

F = {fπ,π′ : π, π′ ∈ Π, π 6= π′}.

Note that |F| ≤ |Π|2.

DM-ST selects π̂ using the following procedure:

DM-ST: π̂ ∈ argminπ∈Π

[
max
f∈F

[
Es,a∼dπf(s, a)− 1

M

M∑
i=1

f(s?i , a
?
i )

]]
.

The following theorem captures the sample complexity of DM-ST.

Theorem 15.4 (Sample Complexity of DM-ST). With probability at least 1− δ, DM-ST finds a policy π̂ such that:

V ? − V π̂ ≤ 4

1− γ

√
2 ln(|Π|) + ln

(
1
δ

)
M

.

Proof: The proof basically relies on a uniform convergence argument over F of which the size is |Π|2. First we note
that for all policy π ∈ Π:

max
f∈F

[Es,a∼dπf(s, a)− Es,a∼d?f(s, a)] = max
f :‖f‖∞≤1

[Es,a∼dπf(s, a)− Es,a∼d?f(s, a)] =
∥∥∥dπ − dπ?∥∥∥

1
,

where the first equality comes from the fact that F includes arg maxf :‖f‖∞≤1 [Es,a∼dπf(s, a)− Es,a∼d?f(s, a)].

Via Hoeffding’s inequality and a union bound over F , we get that with probability at least 1− δ, for all f ∈ F :∣∣∣∣∣ 1

M

M∑
i=1

f(s?i , a
?
i )− Es,a∼d?f(s, a)

∣∣∣∣∣ ≤ 2

√
ln(|F|/δ)

M
:= εstat.
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Denote f̂ := arg maxf∈F
[
Es,a∼dπ̂f(s, a)− Es,a∼d?f(s, a)

]
, and f̃ := arg maxf∈F Es,a∼dπ̂f(s, a)− 1

M

∑M
i=1 f(si, ai).

Hence, for π̂, we have:

∥∥∥dπ̂ − d?∥∥∥
1

= Es,a∼dπ̂ f̂(s, a)− Es,a∼d? f̂(s, a) ≤ Es,a∼dπ̂ f̂(s, a)− 1

M

M∑
i=1

f̂(s?i , a
?
i ) + εstat

≤ Es,a∼dπ̂ f̃(s, a)− 1

M

M∑
i=1

f̃(si, ai) + εstat

≤ Es,a∼dπ? f̃(s, a)− 1

M

M∑
i=1

f̃(si, ai) + εstat

≤ Es,a∼dπ? f̃(s, a)− Es,a∼d? f̃(s, a) + 2εstat = 2εstat,

where in the third inequality we use the optimality of π̂.

Recall that V π = Es,a∼dπr(s, a)/(1− γ), we have:

V π̂ − V ? =
1

1− γ
(
Es,a∼dπ̂r(s, a)− Es,a∼d?r(s, a)

)
≤ sups,a |r(s, a)|

1− γ
∥∥∥dπ̂ − d?∥∥∥

1
≤ 2

1− γ εstat.

This concludes the proof.

Note that above theorem confirms the statistical benefit of having the access to a known transition: comparing to the
classic Behavior Cloning algorithm, the approximation error of DM-ST only scales linearly with respect to horizon
1/(1− γ) instead of quadratically.

15.3.1 Extension to Agnostic Setting

So far we focused on agnostic learning setting. What would happen if π? 6∈ Π? We can still run our DM-ST algorithm
as is. We state the sample complexity of DM-ST in agnostic setting below.

Theorem 15.5 (Agnostic Guarantee of DM-ST). Assume Π is finite, but π? 6∈ Π. With probability at least 1 − δ,
DM-ST learns a policy π̂ such that:

V ? − V π̂ ≤ 1

1− γ ‖d
? − dπ̃‖1 ≤

3

1− γ min
π∈Π
‖dπ − d?‖1 + Õ

(
1

1− γ

√
ln(|Π|+ ln(1/δ))

M

)
.

Proof: We first define some terms below. Denote π̃ := argminπ∈Π ‖dπ − d?‖1. Let us denote:

f̃ = argmaxf∈F
[
Es,a∼dπ̂f(s, a)− Es,a∼dπ̃f(s, a)

]
,

f = argmaxf∈F

[
Es,a∼dπ̂f(s, a)− 1

M

M∑
i=1

f(s?i , a
?
i )

]
,

f ′ = arg max
f∈F

[
Es,a∼dπ̃ [f(s, a)]− 1

M

M∑
i=1

f(s?i , a
?
i )

]
.
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Starting with a triangle inequality, we have:

∥∥∥dπ̂ − dπ?∥∥∥
1
≤
∥∥∥dπ̂ − dπ̃∥∥∥

1
+
∥∥∥dπ̃ − dπ?∥∥∥

1

= Es,a∼dπ̂
[
f̃(s, a)

]
− Es,a∼dπ̃

[
f̃(s, a)

]
+
∥∥∥dπ̃ − dπ?∥∥∥

1

= Es,a∼dπ̂
[
f̃(s, a)

]
− 1

M

M∑
i=1

f̃(s?i , a
?
i ) +

1

M

M∑
i=1

f̃(s?i , a
?
i )− Es,a∼dπ̃

[
f̃(s, a)

]
+
∥∥∥dπ̃ − dπ?∥∥∥

1

≤ Es,a∼dπ̂
[
f(s, a)

]
− 1

M

M∑
i=1

f(s?i , a
?
i ) +

1

M

M∑
i=1

f̃(s?i , a
?
i )− Es,a∼d? f̃(s, a)

+
[
Es,a∼d? f̃(s, a)− Es,a∼dπ̃

[
f̃(s, a)

]]
+
∥∥∥dπ̃ − dπ?∥∥∥

1

≤ Es,a∼dπ̃ [f ′(s, a)]− 1

M

M∑
i=1

f ′(s?i , a
?
i ) + 2

√
ln(|F|/δ)

M
+ 2‖dπ̃ − d?‖1

≤ Es,a∼dπ̃ [f ′(s, a)]− Es,a∼d? [f ′(s, a)] + 4

√
ln(|F|/δ)

M
+ 2‖dπ̃ − d?‖1

≤ 3‖d? − dπ̃‖1 + 4

√
ln(|F|/δ)

M
,

where the first inequality uses the definition of f , the second inequality uses the fact that π̂ is the minimizer of
maxf∈F Es,a∼dπf(s, a) − 1

M

∑M
i=1 f(s?i , a

?
i ), along the way we also use Heoffding’s inequality where ∀f ∈ F ,

|Es,a∼d?f(s, a)−∑M
i=1 f(s?i , a

?
i )| ≤ 2

√
ln(|F|/δ)/M , with probability at least 1− δ.

As we can see, comparing to the realizable setting, here we have an extra term that is related to minπ∈Π ‖dπ −
d?‖1. Note that the dependency on horizon also scales linearly in this case. In general, the constant 3 in front of
minπ∈Π ‖dπ − d?‖1 is not avoidable in Scheffé estimator [Devroye and Lugosi, 2012].

15.4 Maximum Entropy Inverse Reinforcement Learning

Similar to Behavior cloning, we assume we have a dataset of state-action pairs from expert D? = {s?i , a?i }Ni=1 where
s?i , a

?
i ∼ dπ

?

. Different from Behavior cloning, here we assume that we have access to the underlying MDP’s transi-
tion, i.e., we assume transition is known and we can do planning if we were given a cost function.

We assume that we are given a state-action feature mapping φ : S×A 7→ Rd (this can be extended infinite dimensional
feature space in RKHS, but we present finite dimensional setting for simplicity). We assume the true ground truth cost
function as c(s, a) := θ? · φ(s, a) with ‖θ?‖2 ≤ 1 and θ? being unknown.

The goal of the learner is to compute a policy π : S 7→ ∆(A) such that when measured under the true cost function, it
performs as good as the expert, i.e., Es,a∼dπθ? · φ(s, a) ≈ Es,a∼dπ? θ? · φ(s, a).

We will focus on finite horizon MDP setting in this section. We denote ρπ(τ) as the trajectory distribution induced by
π and dπ as the average state-action distribution induced by π.
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15.4.1 MaxEnt IRL: Formulation and The Principle of Maximum Entropy

MaxEnt IRL uses the principle of Maximum Entropy and poses the following policy optimization optimization pro-
gram:

max
π
−
∑
τ

ρπ(τ) ln ρπ(τ),

s.t.,Es,a∼dπφ(s, a) =

N∑
i=1

φ(s?i , a
?
i )/N.

Note that
∑N
i=1 φ(s?i , a

?
i )/N is an unbiased estimate of Es,a∼dπ?φ(s, a). MaxEnt-IRL searches for a policy that

maximizes the entropy of its trajectory distribution subject to a moment matching constraint.

Note that there could be many policies that satisfy the moment matching constraint, i.e., Es,a∼dπφ(s, a) = Es,a∼dπ?φ(s, a),
and any feasible solution is guaranteed to achieve the same performance of the expert under the ground truth cost func-
tion θ? · φ(s, a). The maximum entropy objective ensures that the solution is unique.

Using the Markov property, we notice that:

argmaxπ −
∑
τ

ρπ(τ) ln ρπ(τ) = argmaxπ −Es,a∼dπ lnπ(a|s).

This, we can rewrite the MaxEnt-IRL as follows:

min
π

Es,a∼dπ lnπ(a|s), (0.2)

s.t.,Es,a∼dπφ(s, a) =

N∑
i=1

φ(s?i , a
?
i )/N. (0.3)

15.4.2 Algorithm

To better interpret the objective function, below we replace
∑
i φ(s?i , a

?
i )/N by its expectation Es,a∼dπ?φ(s, a). Note

that we can use standard concentration inequalities to bound the difference between
∑
i φ(s?i , a

?
i )/N and Es,a∼dπ?φ(s, a).

Using Lagrange multipliers, we can rewrite the constrained optimization program in Eq. 0.2 as follows:

min
π

Es,a∼dπ lnπ(a|s) + max
θ

Es,a∼dπθ>φ(s, a)− Es,a∼dπ? θ>φ(s, a).

The above objective conveys a clear goal of our imitation learning problem: we are searching for π that minimizes the
MMD between dπ and dπ

?

with a (negative) entropy regularization on the trajectory distribution of policy π.

To derive an algorithm that optimizes the above objective, we first again swap the min max order via the minimax
theorem:

max
θ

(
min
π

Es,a∼dπθ>φ(s, a)− Es,a∼dπ? θ>φ(s, a) + Es,a∼dπ lnπ(a|s)
)
.

The above objective proposes a natural algorithm where we perform projected gradient ascent on θ, while perform
best response update on π, i.e., given θ, we solve the following planning problem:

argminπ Es,a∼dπθ>φ(s, a) + Es,a∼dπ lnπ(a|s). (0.4)
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Note that the above objective can be understood as planning with cost function θ>φ(s, a) with an additional negative
entropy regularization on the trajectory distribution. On the other hand, given π, we can compute the gradient of θ,
which is simply the difference between the expected features:

Es,a∼dπφ(s, a)− Es,a∼dπ?φ(s, a),

which gives the following gradient ascent update on θ:

θ := θ + η
(
Es,a∼dπφ(s, a)− Es,a∼dπ?φ(s, a)

)
. (0.5)

Algorithm of MaxEnt-IRL MaxEnt-IRL updates π and θ alternatively using Eq. 0.4 and Eq. 0.5, respectively. We
summarize the algorithm in Alg. 9. Note that for the stochastic gradient of θt, we see that it is the empirical average
feature difference between the current policy πt and the expert policy π?.

Algorithm 9 MaxEnt-IRL
Input: Expert data D? = {s?i , a?i }Mi=1, MDPM, parameters β, η,N .

1: Initialize θ0 with ‖θ0‖2 ≤ 1.
2: for t = 1, 2, . . . , do
3: Entropy-regularized Planning with cost θ>t φ(s, a): πt ∈ argminπ Es,a∼dπ

[
θ>t φ(s, a) + β lnπ(a|s)

]
.

4: Draw samples {si, ai}Ni=1 ∼ dπt by executing πt inM.

5: Stochastic Gradient Update: θ′ = θt + η
[

1
N

∑N
i=1 φ(si, ai)− 1

M

∑M
i=1 φ(s?i , a

?
i )
]
.

6: end for

Note that Alg. 9 uses an entropy-regularized planning oracle. Below we discuss how to implement such entropy-
regularized planning oracle via dynamic programming.

15.4.3 Maximum Entropy RL: Implementing the Planning Oracle in Eq. 0.4

The planning oracle in Eq. 0.4 can be implemented in a value iteration fashion using Dynamic Programming. We
denote c(s, a) := θ · φ(s, a).

We are interested in implementing the following planning objective:

argminπ Es,a∼dπ [c(s, a) + lnπ(a|s)]

The subsection has its own independent interests beyond the framework of imitation learning. This maximum entropy
regularized planning formulation is widely used in RL as well and it is well connected to the framework of RL as
Inference.

As usually, we start from the last time step H − 1. For any policy π and any state-action (s, a), we have the cost-to-go
QπH−1(s, a):

QπH−1(s, a) = c(s, a) + lnπ(a|s), V πH−1(s) =
∑
a

π(a|s) (c(s, a) + lnπ(a|s)) .

We have:

V ?H−1(s) = min
ρ∈∆(A)

∑
a

ρ(a)c(s, a) + ρ(a) ln ρ(a). (0.6)

Take gradient with respect to ρ, set it to zero and solve for ρ, we get:

π?H−1(a|s) ∝ exp (−c(s, a)) ,∀s, a.
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Substitute π?H−1 back to the expression in Eq. 0.6, we get:

V ?H−1(s) = − ln

(∑
a

exp (−c(s, a))

)
,

i.e., we apply a softmin operator rather than the usual min operator (recall here we are minimizing cost).

With V ?h+1, we can continue to h. Denote Q?(s, a) as follows:

Q?h(s, a) = r(s, a) + Es′∼P (·|s,a)V
?
h+1(s′).

For V ?h , we have:

V ?h (s) = min
ρ∈∆(A)

∑
a

ρ(a)
(
c(s, a) + ln ρ(a) + Es′∼P (·|s,a)V

?
h+1(s′)

)
.

Again we can show that the minimizer of the above program has the following form:

π?h(a|s) ∝ exp (−Q?h(s, a)) . (0.7)

Substitute π?h back to Q?h, we can show that:

V ?h (s) = − ln

(∑
a

exp (−Q?h(s, a))

)
,

where we see again that V ?h is based on a softmin operator on Q?.

Thus the soft value iteration can be summarized below:

Soft Value Iteration:

Q?H−1(s, a) = c(s, a), π?h(a|s) ∝ exp(−Q?h(s, a)), V ?h (s) = − ln

(∑
a

exp(−Q?h(s, a))

)
,∀h.

We can continue the above procedure to h = 0, which gives us the optimal policies, all in the form of Eq. 0.7

15.5 Interactive Imitation Learning:
AggreVaTe and Its Statistical Benefit over Offline IL Setting

We study the Interactive Imitation Learning setting where we have an expert policy that can be queried at any time
during training, and we also have access to the ground truth reward signal.

We present AggreVaTe (Aggregate Values to Imitate) first and then analyze its sample complexity under the realizable
setting.

Again we start with a realizable policy class Π that is discrete. We denote ∆(Π) as the convex hull of Π and each
policy π ∈ ∆(Π) is a mixture policy represented by a distribution ρ ∈ R|Π| with ρ[i] ≥ 0 and ‖ρ‖1 = 1. With
this parameterization, our decision space simply becomes ∆(|Π|), i.e., any point in ∆(|Π|) corresponds to a mixture
policy. Notation wise, given ρ ∈ ∆(|Π|), we denote πρ as the corresponding mixture policy. We denote πi as the i-th
policy in Π. We denote ρ[i] as the i-th element of the vector ρ.
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Algorithm 10 AggreVaTe
Input: The interactive expert, regularization λ

1: Initialize ρ0 to be a uniform distribution.
2: for t = 0, 2, . . . , do
3: Sample st ∼ dπρt
4: Query expert to get A?(st, a) for all a ∈ A
5: Policy update: ρt+1 = argmaxρ∈∆(|Π|)

∑t
j=0

∑|Π|
i=1 ρ[i]

(
Ea∼πi(·|st)A?(st, a)

)
− λ∑|Π|i=1 ρ[i] ln(ρ[i])

6: end for

AggreVaTe assumes an interactive expert from whom I can query for action feedback. Basically, given a state s, let
us assume that expert returns us the advantages of all actions, i.e., one query of expert oracle at any state s returns
A?(s, a),∀a ∈ A.1

The algorithm in summarized in Alg. 10.

To analyze the algorithm, let us introduce some additional notations. Let us denote `t(ρ) =
∑|Π|
i=1 ρ[i]Ea∼πi(·|s)A?(st, a),

which is dependent on state st generated at iteration t, and is a linear function with respect to decision variable ρ. Ag-
greVaTe is essentially running the specific online learning algorithm, Follow-the-Regularized Leader (FTRL) (e.g.,
see [Shalev-Shwartz, 2011]) with Entropy regularization:

ρt+1 = argmaxρ∈∆(|Π|)

t∑
i=0

`t(ρ) + λEntropy(ρ).

Denote c = maxs,aA
π(s, a). This implies that supρ,t ‖`t(ρ)‖ ≤ c. FTRL with linear loss functions and entropy

regularization gives the following deterministic regret guarantees ([Shalev-Shwartz, 2011]):

max
ρ

T−1∑
t=0

`t(ρ)−
T−1∑
t=0

`t(ρt) ≤ c
√

log(|Π|)T . (0.8)

We will analyze AggreVaTe’s sample complexity using the above result.

Theorem 15.6 (Sample Complexity of AggreVaTe). Denote c = sups,a |A?(s, a)|. Let us denote εΠ and εstat as
follows:

εΠ := max
ρ∈∆(|Π|)

1

M

M−1∑
t=0

`t(ρ
?), εstat :=

√
ln(|Π|)/δ

M
+ 2

√
ln(1/δ)

M
.

With probability at least 1−δ, afterM iterations (i.e., M calls of expert oracle), AggreVaTe finds a policy π̂ such that:

V ? − V π̂ ≤ c

1− γ εstat −
1

1− γ εΠ.

Proof: At each iteration t, let us define ˜̀
t(ρt) as follows:

˜̀
t(ρt) = Es∼dπρt

|Π|∑
i=1

ρt[i]Ea∼πi(·|s)A
?(s, a)

1Technically one cannot use one query to get A?(s, a) for all a. But one can use importance weighting to get an unbiased estimate of A?(s, a)
for all a via just one expert roll-out. For analysis simplicity, we assume one expert query at s returns the whole vector A?(s, ·) ∈ R|A|.
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Denote Et[`t(ρt)] as the conditional expectation of `t(ρt), conditioned on all history up and including the end of
iteration t − 1. Thus, we have Et[`t](ρt) = ˜̀

t(ρt) as ρt only depends on the history up to the end of iteration t − 1.
Also note that |`t(ρ)| ≤ c. Thus by Azuma-Hoeffding inequality (Theorem A.5), we get:∣∣∣∣∣ 1

M

M−1∑
t=0

˜̀
t(ρt)−

1

T

M−1∑
t=0

`t(ρt)

∣∣∣∣∣ ≤ 2c

√
ln(1/δ)

M
,

with probability at least 1 − δ. Now use Eq. 0.8, and denote ρ? = argminρ∈∆(Π)
1
M

∑M−1
t=0 `t(ρ), i.e., the best

minimizer that minimizes the average loss
∑M−1
t=0 `t(ρ)/M . we get:

1

M

M−1∑
t=0

˜̀
t(ρt) ≥

1

M

M−1∑
t=0

`t(ρt)− 2c

√
ln(1/δ)

M
≥ 1

M

M−1∑
t=0

`t(ρ
?)− c

√
ln(|Π|)
M

− 2c

√
ln(1/δ)

M
,

which means that there must exist a t̂ ∈ {0, . . . ,M − 1}, such that:

˜̀̂
t(ρt̂) ≥

1

M

M−1∑
t=0

`t(ρ
?)− c

√
ln(|Π|)
M

− 2c

√
ln(1/δ)

M
.

Now use Performance difference lemma, we have:

(1− γ) (−V ? + V πρt̂ ) = Es∼dπρt̂
|Π|∑
i=1

ρt̂[i]Ea∼πi(·|s)A
?(s, a) = `t̂(ρt̂)

≥ 1

M

M−1∑
t=0

`t(ρ
?)− c

√
ln(|Π|)
T

− 2c

√
ln(1/δ)

T
.

Rearrange terms, we get:

V ? − V πρt̂ ≤ − 1

1− γ

[
1

M

M−1∑
t=0

`t(ρ
?)

]
+

c

1− γ

[√
ln(|Π|)/δ

M
+ 2

√
ln(1/δ)

M

]
,

which concludes the proof.

Remark We analyze the εΠ by discussing realizable setting and non-realizable setting separately. When Π is re-
alizable, i.e., π? ∈ Π, by the definition of our loss function `t, we immediately have

∑M
i=1 `t(ρ

?) ≥ 0 since
A?(s, π?(s)) = 0 for all s ∈ S . Moreover, when π? is not the globally optimal policy, it is possible that εΠ :=∑M
i=1 `t(ρ

?)/M > 0, which implies that when M → ∞ (i.e., εstat → 0), AggreVaTe indeed can learn a policy that
outperforms the expert policy π?. In general when π? 6∈ Π, there might not exist a mixture policy ρ that achieves
positive advantage against π? under the M training samples {s0, . . . , sM−1}. In this case, εΠ < 0.

Does AggreVaTe avoids distribution shift? Under realizable setting, note that the bound explicitly depends on sups,a |A?(s, a)|
(i.e., it depends on |`t(ρt)| for all t). In worst case, it is possible that sups,a |A?(s, a)| = Θ(1/(1−γ)), which implies
that AggreVaTe could suffer a quadratic horizon dependency, i.e., 1/(1 − γ)2. Note that DM-ST provably scales
linearly with respect to 1/(1− γ), but DM-ST requires a stronger assumption that the transition P is known.

When sups,a |A?(s, a)| = o(1/(1 − γ)), then AggreVaTe performs strictly better than BC. This is possible when the
MDP is mixing quickly under π?, or Q? is L- Lipschitz continuous, i.e., |Q?(s, a) − Q?(s, a′)| ≤ L‖a − a′‖, with
bounded range in action space, e.g., supa,a′ ‖a−a′‖ ≤ β ∈ R+. In this case, if L and β are independent of 1/(1−γ),
then sups,a |A?(s, a)| ≤ Lβ, which leads to a βL

1−γ dependency.
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When π? 6∈ Π, the agnostic result of AggreVaTe and the agnostic result of DM-ST is not directly comparable. Note that
the model class error that DM-ST suffers is algorithmic-independent, i.e., it is minπ∈Π ‖dπ−dπ

?‖1 and it only depends
on π? and Π, while the model class εΠ in AggreVaTe is algorithmic path-dependent, i.e., in additional to π? and Π,
it depends the policies π1, π2, . . . computed during the learning process. Another difference is that minπ∈Π ‖dπ −
dπ

?‖1 ∈ [0, 2], while εΠ indeed could scale linearly with respect to 1/(1− γ), i.e., επ ∈ [− 1
1−γ , 0] (assume π? is the

globally optimal policy for simplicity).

15.6 Bibliographic Remarks and Further Readings

Behavior cloning was used in autonomous driving back in 1989 [Pomerleau, 1989], and the distribution shift and
compounding error issue was studied by Ross and Bagnell [2010]. Ross and Bagnell [2010], Ross et al. [2011]
proposed using interactive experts to alleviate the distribution shift issue.

MaxEnt-IRL was proposed by Ziebart et al. [2008]. The original MaxEnt-IRL focuses on deterministic MDPs and
derived distribution over trajectories. Later Ziebart et al. [2010] proposed the Principle of Maximum Causal Entropy
framework which captures MDPs with stochastic transition. MaxEnt-IRL has been widely used in real applications
(e.g., [Kitani et al., 2012, Ziebart et al., 2009]).

To the best of our knowledge, the algorithm Distribution Matching with Scheffé Tournament introduced in this chapter
is new here and is the first to demonstrate the statistical benefit (in terms of sample complexity of the expert policy) of
the hybrid setting over the pure offline setting with general function approximation.

Recently, there are approaches that extend the linear cost functions used in MaxEnt-IRL to deep neural networks
which are treated as discriminators to distinguish between experts datasets and the datasets generated by the policies.
Different distribution divergences have been proposed, for instance, JS-divergence [Ho and Ermon, 2016], general
f-divergence which generalizes JS-divergence [Ke et al., 2019], and Integral Probability Metric (IPM) which includes
Wasserstein distance [Sun et al., 2019b]. While these adversarial IL approaches are promising as they fall into the hy-
brid setting, it has been observed that empirically, adversarial IL sometimes cannot outperform simple algorithms such
as Behavior cloning which operates in pure offline setting (e.g., see experiments results on common RL benchmarks
from Brantley et al. [2019]).

Another important direction in IL is to combine expert demonstrations and reward functions together (i.e., perform
Imitation together with RL). There are many works in this direction, including learning with pre-collected expert data
[Hester et al., 2017, Rajeswaran et al., 2017, Cheng et al., 2018, Le et al., 2018, Sun et al., 2018], learning with an
interactive expert [Daumé et al., 2009, Ross and Bagnell, 2014, Chang et al., 2015, Sun et al., 2017, Cheng et al.,
2020, Cheng and Boots, 2018]. The algorithm AggreVaTe was originally introduced in [Ross and Bagnell, 2014]. A
policy gradient and natural policy gradient version of AggreVaTe are introduced in [Sun et al., 2017]. The precursor
of AggreVaTe is the algorithm Data Aggregation (DAgger) [Ross et al., 2011], which leverages interactive experts and
a reduction to no-regret online learning, but without assuming access to the ground truth reward signals.

The maximum entropy RL formulation has been widely used in RL literature as well. For instance, Guided Policy
Search (GPS) (and its variants) use maximum entropy RL formulation as its planning subroutine [Levine and Koltun,
2013, Levine and Abbeel, 2014]. We refer readers to the excellent survey from Levine [2018] for more details of
Maximum Entropy RL formulation and its connections to the framework of RL as Probabilistic Inference.
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Chapter 16

Linear Quadratic Regulators

This chapter will introduce some of the fundamentals of optimal control for the linear quadratic regulator model. This
model is an MDP, with continuous states and actions. While the model itself is often inadequate as a global model, it
can be quite effective as a locally linear model (provided our system does not deviate away from the regime where our
linear model is reasonable approximation).

The basics of optimal control theory can be found in any number of standards text Anderson and Moore [1990], Evans
[2005], Bertsekas [2017]. The treatment of Gauss-Newton and the NPG algorithm are due to Fazel et al. [2018].

16.1 The LQR Model

In the standard optimal control problem, a dynamical system is described as

xt+1 = ft(xt, ut, wt) ,

where ft maps a state xt ∈ Rd, a control (the action) ut ∈ Rk, and a disturbance wt, to the next state xt+1 ∈ Rd,
starting from an initial state x0. The objective is to find the control policy π which minimizes the long term cost,

minimize Eπ

[
H∑
t=0

ct(xt, ut)

]
such that xt+1 = ft(xt, ut, wt) t = 0, . . . ,H.

where H is the time horizon (which can be finite or infinite).

In practice, this is often solved by considering the linearized control (sub-)problem where the dynamics are approxi-
mated by

xt+1 = Atxt +Btut + wt,

with the matrices At and Bt are derivatives of the dynamics f and where the costs are approximated by a quadratic
function in xt and ut.

This chapter focuses on an important special case: finite and infinite horizon problem referred to as the linear quadratic
regulator (LQR) problem. We can view this model as being an local approximation to non-linear model. However, we
will analyze these models under the assumption that they are globally valid.
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Finite Horizon LQRs. The finite horizon LQR problem is given by

minimize E

[
x>HQxH +

H−1∑
t=0

(x>t Qxt + u>t Rut)

]
such that xt+1 = Atxt +Btut + wt , x0 ∼ D, wt ∼ N(0, σ2I) ,

where initial state x0 ∼ D is assumed to be randomly distributed according to distributionD; the disturbance wt ∈ Rd
follows the law of a multi-variate normal with covariance σ2I; the matrices At ∈ Rd×d and Bt ∈ Rd×k are referred
to as system (or transition) matrices; Q ∈ Rd×d and R ∈ Rk×k are both positive definite matrices that parameterize
the quadratic costs. Note that this model is a finite horizon MDP, where the S = Rd and A = Rk.

Infinite Horizon LQRs. We also consider the infinite horizon LQR problem:

minimize lim
H→∞

1

H
E

[
H∑
t=0

(x>t Qxt + u>t Rut)

]
such that xt+1 = Axt +But + wt , x0 ∼ D, wt ∼ N(0, σ2I).

Note that here we are assuming the dynamics are time homogenous. We will assume that the optimal objective function
(i.e. the optimal average cost) is finite; this is referred to as the system being controllable. This is a special case of an
MDP with an average reward objective.

Throughout this chapter, we assume A and B are such that the optimal cost is finite. Due to the geometric nature of
the system dynamics (say for a controller which takes controls ut that are linear in the state xt), there may exists linear
controllers with infinite costs. This instability of LQRs (at least for some A and B and some controllers) leads to that
the theoretical analysis often makes various assumptions on A and B in order to guarantee some notion of stability. In
practice, the finite horizon setting is more commonly used in practice, particularly due to that the LQR model is only a
good local approximation of the system dynamics, where the infinite horizon model tends to be largely of theoretical
interest. See Section 16.6.

The infinite horizon discounted case? The infinite horizon discounted case tends not to be studied for LQRs. This
is largely due to that, for the undiscounted case (with the average cost objective), we have may infinte costs (due to the
aforementioned geometric nature of the system dynamics); in such cases, discounting will not necessarily make the
average cost finite.

16.2 Bellman Optimality:
Value Iteration & The Algebraic Riccati Equations

A standard result in optimal control theory shows that the optimal control input can be written as a linear function in
the state. As we shall see, this is a consequence of the Bellman equations.

16.2.1 Planning and Finite Horizon LQRs

Slightly abusing notation, it is convenient to define the value function and state-action value function with respect to
the costs as follows: For a policy π, a state x, and h ∈ {0, . . . H − 1}, we define the value function V πh : Rd → R as

V πh (x) = E
[
x>HQxH +

H−1∑
t=h

(x>t Qxt + u>t Rut)
∣∣ π, xh = x

]
,
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where again expectation is with respect to the randomness of the trajectory, that is, the randomness in state transitions.
Similarly, the state-action value (or Q-value) function Qπh : Rd × Rk → R is defined as

Qπh(x, u) = E
[
x>HQxH +

H−1∑
t=h

(x>t Qxt + u>t Rut)
∣∣ π, xh = x, uh = u

]
.

We define V ? and Q? analogously.

The following theorem provides a characterization of the optimal policy, via the algebraic Riccati equations. These
equations are simply the value iteration algorithm for the special case of LQRs.

Theorem 16.1. (Value Iteration and the Riccati Equations). Suppose R is positive definite. The optimal policy is a
linear controller specified by:

π?(xt) = −K?
t xt

where

K?
t = (B>t Pt+1Bt +R)−1B>t Pt+1At.

Here, Pt can be computed iteratively, in a backwards manner, using the following algebraic Riccati equations, where
for t ∈ [H],

Pt := A>t Pt+1At +Q−A>t Pt+1Bt(B
>
t Pt+1Bt +R)−1B>t Pt+1At

= A>t Pt+1At +Q− (K?
t+1)>(B>t Pt+1Bt +R)K?

t+1

and where PH = Q. (The above equation is simply the value iteration algorithm).

Furthermore, for t ∈ [H], we have that:

V ?t (x) = x>Ptx+ σ2
H∑

h=t+1

Trace(Ph).

We often refer to K?
t as the optimal control gain matrices. It is straightforward to generalize the above when σ ≥ 0.

We have assumed that R is strictly positive definite, to avoid have to working with the pseudo-inverse; the theorem is
still true when R = 0, provided we use a pseudo-inverse.

Proof: By the Bellman optimality conditions (Theorem ?? for episodic MDPs), we know the optimal policy (among
all possibly history dependent, non-stationary, and randomized policies), is given by a deterministic stationary policy
which is only a function of xt and t. We have that:

QH−1(x, u) = E
[
(AH−1x+BH−1u+ wH−1)>Q(AH−1x+BH−1u+ wH−1)

]
+ x>Qx+ u>Ru

= (AH−1x+BH−1u)>Q(AH−1x+BH−1u) + σ2Trace(Q) + x>Qx+ u>Ru

due to that xH = AH−1x + BH−1u + wH−1, and E[w>H−1QwH−1] = Trace(σ2Q). Due to that this is a quadratic
function of u, we can immediately derive that the optimal control is given by:

π?H−1(x) = −(B>H−1QBH−1 +R)−1B>H−1QAH−1x = −K?
H−1x,

where the last step uses that PH := Q.

For notational convenience, let K = K?
H−1, A = AH−1, and B = BH−1. Using the optimal control at x, i.e.
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u = −K?
H−1x, we have:

V ?H−1(x) = QH−1(x,−K?
H−1x)

= x>
(

(A−BK)>Q(A−BK) +Q+K>RK
)
x+ σ2Trace(Q)

= x>
(
AQA+Q− 2K>B>QA+K>(B>QB +R)K

)
x+ σ2Trace(Q)

= x>
(
AQA+Q− 2K>(B>QB +R)K +K>(B>QB +R)K

)
x+ σ2Trace(Q)

= x>
(
AQA+Q−K>(B>QB +R)K

)
x+ σ2Trace(Q)

= x>PH−1x+ σ2Trace(Q).

where the fourth step uses our expression for K = K?
H−1. This proves our claim for t = H − 1.

This implies that:

Q?H−2(x, u) = E[V ?H−1(AH−2x+BH−2u+ wH−2)] + x>Qx+ u>Ru

= (AH−2x+BH−2u)>PH−1(AH−2x+BH−2u) + σ2Trace(PH−1) + σ2Trace(Q) + x>Qx+ u>Ru.

The remainder of the proof follows from a recursive argument, which can be verified along identical lines to the
t = H − 1 case.

16.2.2 Planning and Infinite Horizon LQRs

Theorem 16.2. Suppose that the optimal cost is finite and that R is positive definite. Let P be a solution to the
following algebraic Riccati equation:

P = ATPA+Q−ATPB(BTPB +R)−1BTPA. (0.1)

(Note that P is a positive definite matrix). We have that the optimal policy is:

π?(x) = −K?x

where the optimal control gain is:
K∗ = −(BTPB +R)−1BTPA. (0.2)

We have that P is unique and that the optimal average cost is σ2Trace(P ).

As before, P parameterizes the optimal value function. We do not prove this theorem here though it follows along
similar lines to the previous proof, via a limiting argument.

To find P , we can again run the recursion:

P ← Q+ATPA−ATPB(R+BTPB)−1BTPA

starting with P = Q, which can be shown to converge to the unique positive semidefinite solution of the Riccati
equation (since one can show the fixed-point iteration is contractive). Again, this approach is simply value iteration.

16.3 Convex Programs to find P and K?

For the infinite horizon LQR problem, the optimization may be formulated as a convex program. In particular, the
LQR problem can also be expressed as a semidefinite program (SDP) with variable P , for the infinite horizon case.
We now present this primal program along with the dual program.
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Note that these programs are the analogues of the linear programs from Section ?? for MDPs. While specifying these
linear programs for an LQR (as an LQR is an MDP) would result in infinite dimensional linear programs, the special
structure of the LQR implies these primal and dual programs have a more compact formulation when specified as an
SDP.

16.3.1 The Primal for Infinite Horizon LQR

The primal optimization problem is given as:

maximize σ2Trace(P )

subject to
[
ATPA+Q− P A>PB
BTPA B>PB +R

]
� 0, P � 0,

where the optimization variable is P . This SDP has a unique solution, P ?, which satisfies the algebraic Riccati
equations (Equation 0.1 ); the optimal average cost of the infinite horizon LQR is σ2Trace(P ?); and the optimal
policy is given by Equation 0.2.

The SDP can be derived by relaxing the equality in the Riccati equation to an inequality, then using the Schur comple-
ment lemma to rewrite the resulting Riccati inequality as linear matrix inequality. In particular, we can consider the
relaxation where P must satisfy:

ATPA+Q−ATPB(BTPB +R)−1BTPA � P.
That the solution to this relaxed optimization problem leads to the optimal P ? is due to the Bellman optimality
conditions.

Now the Schur complement lemma for positive semi-definiteness is as follows: define

X =

[
D E
E> F

]
.

(for matrices D, E, and F of appropriate size, with D and F being square symmetric matrices). We have that X is
PSD if and only if

D − E>F−1E � 0.

This shows that the constraint set is equivalent to the above relaxation.

16.3.2 The Dual

The dual optimization problem is given as:

minimize Trace
(

Σ ·
[
Q 0
0 R

])
subject to Σxx = (A B)Σ(A B)> + σ2I, Σ � 0,

where the optimization variable is a symmetric matrix Σ, which is a (d+ k)× (d+ k) matrix with the block structure:

Σ =

[
Σxx Σxu
Σux Σuu

]
.

The interpretation of Σ is that it is the covariance matrix of the stationary distribution. This analogous to the state-
visitation measure for an MDP.

This SDP has a unique solution, say Σ?. The optimal gain matrix is then given by:

K? = −Σ?ux(Σ?xx)−1.
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16.4 Policy Iteration, Gauss Newton, and NPG

Note that the noise variance σ2 does not impact the optimal policy, in either the discounted case or in the infinite
horizon case.

Here, when we examine local search methods, it is more convenient to work with case where σ = 0. In this case, we
can work with cumulative cost rather the average cost. Precisely, when σ = 0, the infinite horizon LQR problem takes
the form:

min
K

C(K), where C(K) = Ex0∼D

[
H∑
t=0

(x>t Qxt + u>t Rut)

]
,

where they dynamics evolves as
xt+1 = (A−BK)xt.

Note that we have directly parameterized our policy as a linear policy in terms of the gain matrix K, due to that we
know the optimal policy is linear in the state. Again, we assume that C(K?) is finite; this assumption is referred to as
the system being controllable.

We now examine local search based approaches, where we will see a close connection to policy iteration. Again, we
have a non-convex optimization problem:

Lemma 16.3. (Non-convexity) If d ≥ 3, there exists an LQR optimization problem, minK C(K), which is not convex
or quasi-convex.

Regardless, we will see that gradient based approaches are effective. For local search based approaches, the importance
of (some) randomization, either in x0 or noise through having a disturbance, is analogous to our use of having a wide-
coverage distribution µ (for MDPs).

16.4.1 Gradient Expressions

Gradient descent on C(K), with a fixed stepsize η, follows the update rule:

K ← K − η∇C(K) .

It is helpful to explicitly write out the functional form of the gradient. Define PK as the solution to:

PK = Q+K>RK + (A−BK)>PK(A−BK) .

and, under this definition, it follows that C(K) can be written as:

C(K) = Ex0∼D x
>
0 PKx0 .

Also, define ΣK as the (un-normalized) state correlation matrix, i.e.

ΣK = Ex0∼D

∞∑
t=0

xtx
>
t .

Lemma 16.4. (Policy Gradient Expression) The policy gradient is:

∇C(K) = 2
(
(R+B>PKB)K −B>PKA

)
ΣK

For convenience, define EK to be

EK =
(
(R+B>PKB)K −B>PKA

)
,

as a result the gradient can be written as∇C(K) = 2EKΣK .
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Proof: Observe:

CK(x0) = x>0 PKx0 = x>0
(
Q+K>RK

)
x0 + x>0 (A−BK)>PK(A−BK)x0

= x>0
(
Q+K>RK

)
x0 + CK((A−BK)x0) .

Let∇ denote the gradient with respect to K; note that∇CK((A−BK)x0) has two terms as function of K, one with
respect to K in the subscript and one with respect to the input (A−BK)x0. This implies

∇CK(x0) = 2RKx0x
>
0 − 2B>PK(A−BK)x0x

>
0 +∇CK(x1)|x1=(A−BK)x0

= 2
(
(R+B>PKB)K −B>PKA

) ∞∑
t=0

xtx
>
t

where we have used recursion and that x1 = (A−BK)x0. Taking expectations completes the proof.

The natural policy gradient. Let us now motivate a version of the natural gradient. The natural policy gradient
follows the update:

θ ← θ − η F (θ)−1∇C(θ), where F (θ) = E

[ ∞∑
t=0

∇ log πθ(ut|xt)∇ log πθ(ut|xt)>
]
,

where F (θ) is the Fisher information matrix. A natural special case is using a linear policy with additive Gaussian
noise, i.e.

πK(x, u) = N (Kx, σ2I) (0.3)

where K ∈ Rk×d and σ2 is the noise variance. In this case, the natural policy gradient of K (when σ is considered
fixed) takes the form:

K ← K − η∇C(πK)Σ−1
K (0.4)

Note a subtlety here is that C(πK) is the randomized policy.

To see this, one can verify that the Fisher matrix of size kd × kd, which is indexed as [GK ](i,j),(i′,j′) where i, i′ ∈
{1, . . . k} and j, j′ ∈ {1, . . . d}, has a block diagonal form where the only non-zeros blocks are [GK ](i,·),(i,·) = ΣK
(this is the block corresponding to the i-th coordinate of the action, as i ranges from 1 to k). This form holds more
generally, for any diagonal noise.

16.4.2 Convergence Rates

We consider three exact rules, where we assume access to having exact gradients. As before, we can also estimate
these gradients through simulation. For gradient descent, the update is

Kn+1 = Kn − η∇C(Kn). (0.5)

For natural policy gradient descent, the direction is defined so that it is consistent with the stochastic case, as per
Equation 0.4, in the exact case the update is:

Kn+1 = Kn − η∇C(Kn)Σ−1
Kn

(0.6)

One show that the Gauss-Newton update is:

Kn+1 = Kn − η(R+B>PKnB)−1∇C(Kn)Σ−1
Kn

. (0.7)

(Gauss-Newton is non-linear optimization approach which uses a certain Hessian approximation. It can be show that
this leads to the above update rule.) Interestingly, for the case when η = 1 , the Gauss-Newton method is equivalent
to the policy iteration algorithm, which optimizes a one-step deviation from the current policy.

173



The Gauss-Newton method requires the most complex oracle to implement: it requires access to ∇C(K), ΣK , and
R+B>PKB; as we shall see, it also enjoys the strongest convergence rate guarantee. At the other extreme, gradient
descent requires oracle access to only∇C(K) and has the slowest convergence rate. The natural policy gradient sits in
between, requiring oracle access to∇C(K) and ΣK , and having a convergence rate between the other two methods.

In this theorem, ‖M‖2 denotes the spectral norm of a matrix M .

Theorem 16.5. (Global Convergence of Gradient Methods) Suppose C(K0) is finite and, for µ defined as

µ := σmin(Ex0∼Dx0x
>
0 ),

suppose µ > 0.

• Gauss-Newton case: Suppose η = 1, the Gauss-Newton algorithm (Equation 0.7) enjoys the following perfor-
mance bound:

C(KN )− C(K∗) ≤ ε, for N ≥ ‖ΣK∗‖2
µ

log
C(K0)− C(K∗)

ε
.

• Natural policy gradient case: For a stepsize η = 1/(‖R‖2 +
‖B‖22C(K0)

µ ), natural policy gradient descent
(Equation 0.6) enjoys the following performance bound:

C(KN )− C(K∗) ≤ ε, for N ≥ ‖ΣK∗‖2
µ

( ‖R‖2
σmin(R)

+
‖B‖22C(K0)

µσmin(R)

)
log

C(K0)− C(K∗)

ε
.

• Gradient descent case: For any starting policyK0, there exists a (constant) stepsize η (which could be a function
of K0), such that:

C(KN )→ C(K∗), as N →∞.

16.4.3 Gauss-Newton Analysis

We only provide a proof for the Gauss-Newton case (see 16.6 for further readings).

We overload notation and let K denote the policy π(x) = Kx. For the infinite horizon cost function, define:

VK(x) :=

∞∑
t=0

(
x>t Qxt + u>t Rut

)
= x>PKx ,

and
QK(x, u) := x>Qx+ u>Ru+ VK(Ax+Bu) ,

and
AK(x, u) = QK(x, u)− VK(x) .

The next lemma is identical to the performance difference lemma.

Lemma 16.6. (Cost difference lemma) Suppose K and K ′ have finite costs. Let {x′t} and {u′t} be state and action
sequences generated by K ′, i.e. starting with x′0 = x and using u′t = −K ′x′t. It holds that:

VK′(x)− VK(x) =
∑
t

AK(x′t, u
′
t) .

Also, for any x, the advantage is:

AK(x,K ′x) = 2x>(K ′ −K)>EKx+ x>(K ′ −K)>(R+B>PKB)(K ′ −K)x . (0.8)
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Proof: Let c′t be the cost sequence generated by K ′. Telescoping the sum appropriately:

VK′(x)− VK(x) =
∑
t=0

c′t − VK(x) =
∑
t=0

(c′t + VK(x′t)− VK(x′t))− VK(x)

=
∑
t=0

(c′t + VK(x′t+1)− VK(x′t)) =
∑
t=0

AK(x′t, u
′
t)

which completes the first claim (the third equality uses the fact that x = x0 = x′0).

For the second claim, observe that:

VK(x) = x>
(
Q+K>RK

)
x+ x>(A−BK)>PK(A−BK)x

And, for u = K ′x,

AK(x, u) = QK(x, u)− VK(x)

= x>
(
Q+ (K ′)>RK ′

)
x+ x>(A−BK ′)>PK(A−BK ′)x− VK(x)

= x>
(
Q+ (K ′ −K +K)>R(K ′ −K +K)

)
x+

x>(A−BK −B(K ′ −K))>PK(A−BK −B(K ′ −K))x− VK(x)

= 2x>(K ′ −K)>
(
(R+B>PKB)K −B>PKA

)
x+

x>(K ′ −K)>(R+B>PKB)(K ′ −K))x ,

which completes the proof.

We have the following corollary, which can be viewed analogously to a smoothness lemma.

Corollary 16.7. (“Almost” smoothness) C(K) satisfies:

C(K ′)− C(K) = −2Trace(ΣK′(K −K ′)>EK) + Trace(ΣK′(K −K ′)>(R+B>PKB)(K −K ′))

To see why this is related to smoothness (recall the definition of a smooth function in Equation 0.6), suppose K ′ is
sufficiently close to K so that:

ΣK′ ≈ ΣK +O(‖K −K ′‖) (0.9)

and the leading order term 2Trace(ΣK′(K
′ −K)>EK) would then behave as Trace((K ′ −K)>∇C(K)).

Proof: The claim immediately results from Lemma 16.6, by using Equation 0.8 and taking an expectation.

We now use this cost difference lemma to show that C(K) is gradient dominated.

Lemma 16.8. (Gradient domination) Let K∗ be an optimal policy. Suppose K has finite cost and µ > 0. It holds
that:

C(K)− C(K∗) ≤ ‖ΣK∗‖Trace(E>K(R+B>PKB)−1EK)

≤ ‖ΣK∗‖
µ2σmin(R)

Trace(∇C(K)>∇C(K))

Proof: From Equation 0.8 and by completing the square,

AK(x,K ′x) = QK(x,K ′x)− VK(x)

= 2Trace(xx>(K ′ −K)>EK) + Trace(xx>(K ′ −K)>(R+B>PKB)(K ′ −K))

= Trace(xx>
(
K ′ −K + (R+B>PKB)−1EK

)>
(R+B>PKB)

(
K ′ −K + (R+B>PKB)−1EK

)
)

− Trace(xx>E>K(R+B>PKB)−1EK)

≥ −Trace(xx>E>K(R+B>PKB)−1EK) (0.10)
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with equality when K ′ = K − (R+B>PKB)−1EK .

Let x∗t and u∗t be the sequence generated under K∗. Using this and Lemma 16.6,

C(K)− C(K∗) = −E
∑
t

AK(x∗t , u
∗
t ) ≤ E

∑
t

Trace(x∗t (x
∗
t )
>E>K(R+B>PKB)−1EK)

= Trace(ΣK∗E
>
K(R+B>PKB)−1EK) ≤ ‖ΣK∗‖Trace(E>K(R+B>PKB)−1EK)

which completes the proof of first inequality. For the second inequality, observe:

Trace(E>K(R+B>PKB)−1EK) ≤ ‖(R+B>PKB)−1‖Trace(E>KEK) ≤ 1

σmin(R)
Trace(E>KEK)

=
1

σmin(R)
Trace(Σ−1

K ∇C(K)>∇C(K)Σ−1
K ) ≤ 1

σmin(ΣK)2σmin(R)
Trace(∇C(K)>∇C(K))

≤ 1

µ2σmin(R)
Trace(∇C(K)>∇C(K))

which completes the proof of the upper bound. Here the last step is because ΣK � E[x0x
>
0 ].

The next lemma bounds the one step progress of Gauss-Newton.

Lemma 16.9. (Gauss-Newton Contraction) Suppose that:

K ′ = K − η(R+B>PKB)−1∇C(K)Σ−1
K , .

If η ≤ 1, then

C(K ′)− C(K∗) ≤
(

1− ηµ

‖ΣK∗‖

)
(C(K)− C(K∗))

Proof: Observe that for PSD matrices A and B, we have that Trace(AB) ≥ σmin(A)Trace(B). Also, observe
K ′ = K − η(R+B>PKB)−1EK . Using Lemma 16.7 and the condition on η,

C(K ′)− C(K) = −2ηTrace(ΣK′E
>
K(R+B>PKB)−1EK) + η2Trace(ΣK′E

>
K(R+B>PKB)−1EK)

≤ −ηTrace(ΣK′E
>
K(R+B>PKB)−1EK)

≤ −ησmin(ΣK′)Trace(E>K(R+B>PKB)−1EK)

≤ −ηµTrace(E>K(R+B>PKB)−1EK)

≤ −η µ

‖ΣK∗‖
(C(K)− C(K∗)) ,

where the last step uses Lemma 16.8.

With this lemma, the proof of the convergence rate of the Gauss Newton algorithm is immediate.

Proof: (of Theorem 16.5, Gauss-Newton case) The theorem is due to that η = 1 leads to a contraction of 1− µ
‖ΣK∗‖

at every step.

16.5 System Level Synthesis for Linear Dynamical Systems

We demonstrate another parameterization of controllers which admits convexity. Specifically in this section, we
consider finite horizon setting, i.e.,

xt+1 = Axt +But + wt, x0 ∼ D, wt ∼ N (0, σ2I), t ∈ [0, 1, . . . ,H − 1].
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Instead of focusing on quadratic cost function, we consider general convex cost function c(xt, ut), and the goal is to
optimize:

Eπ

[
H−1∑
t=0

ct(xt, ut)

]
,

where π is a time-dependent policy.

While we relax the assumption on the cost function from quadratic cost to general convex cost, we still focus on linearly
parameterized policy, i.e., we are still interested in searching for a sequence of time-dependent linear controllers
{−K?

t }H−1
t=0 with ut = −K?

t xt, such that it minimizes the above objective function. We again assume the system is
controllable, i.e., the expected total cost under {−K?

t }H−1
t=0 is finite.

Note that due to the fact that now the cost function is not quadratic anymore, the Riccati equation we studied before
does not hold , and it is not necessarily true that the value function of any linear controllers will be a quadratic function.

We present another parameterization of linear controllers which admit convexity in the objective function with respect
to parameterization (recall that the objective function is non-convex with respect to linear controllers −Kt). With the
new parameterization, we will see that due to the convexity, we can directly apply gradient descent to find the globally
optimal solution.

Consider any fixed time-dependent linear controllers {−Kt}H−1
t=0 . We start by rolling out the linear system under the

controllers. Note that during the rollout, once we observe xt+1, we can compute wt as wt = xt+1−Axt−But. With
x0 ∼ µ, we have that at time step t:

ut = −Ktxt = −Kt(Axt−1 −BKt−1xt−1 + wt−1)

= −Ktwt−1 −Kt(A−BKt−1)xt−1

= −Ktwt−1 −Kt(A−BKt−1)(Axt−2 −BKt−2xt−2 + wt−2)

= −Kt︸︷︷︸
:=Mt−1;t

wt−1−Kt(A−BKt−1)︸ ︷︷ ︸
:=Mt−2;t

wt−2−Kt(A−BKt−1)(A−BKt−2)︸ ︷︷ ︸
:=Mt−3;t

xt−2

= −Kt

(
t∏

τ=1

(A−BKt−τ )

)
x0 −

t−1∑
τ=0

Kt

t−1−τ∏
h=1

(A−BKt−h)wτ

Note that we can equivalently write ut using x0 and the noises w0, . . . , wt−1. Hence for time step t, let us do the
following re-parameterization. Denote

Mt := −Kt

(
t∏

τ=1

(A−BKt−τ )

)
, Mτ ;t := −Kt

t−1−τ∏
h=1

(A−BKt−h), where τ = [0, . . . , t− 1].

Now we can express the control ut using Mτ ;t for τ ∈ [0, . . . , t− 1] and Mt as follows:

ut = Mtx0 +

t−1∑
τ=0

Mτ ;twτ ,

which is equal to ut = −Ktxt. Note that above we only reasoned time step t. We can repeat the same calculation for
all t = 0→ H − 1.

The above calculation basically proves the following claim.

Claim 16.10. For any linear controllers π := {−K0, . . . ,−KH−1}, there exists a parameterization,
π̃ := {{Mt,M0;t, . . .Mt−1;t}}H−1

t=0 , such that when execute π and π̃ under any initialization x0, and any sequence of
noises {wt}H−1

t=0 , they generate exactly the same state-control trajectory.
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We can execute π̃ := {{Mt,M0;t, . . .Mt−1;t}}H−1
t=0 in the following way. Given any x0, we execute u0 = M0x0 and

observe x1; at time step t with the observed xt, we calculate wt−1 = xt − Axt−1 − But−1, and execute the control
ut = Mtx0 +

∑t−1
τ=0Mτ ;twτ . We repeat until we execute the last control uH−1 and reach xH .

What is the benefit of the above parameterization? Note that for any t, this is clearly over-parameterized: the simple
linear controllers −Kt has d × k many parameters, while the new controller {Mt; {Mτ ;t}t−1

τ=0} has t × d × k many
parameters. The benefit of the above parameterization is that the objective function now is convex! The following
claim formally shows the convexity.

Claim 16.11. Given π̃ := {{Mt,M0;t, . . .Mt−1;t}}H−1
t=0 and denote its expected total cost as J(π̃) := E

[∑H−1
t=0 c(xt, ut)

]
,

where the expectation is with respect to the noise wt ∼ N (0, σ2I) and the initial state x0 ∼ µ, and c is any convex
function with respect to x, u. We have that J(π̃) is convex with respect to parameters {{Mt,M0;t, . . .Mt−1;t}}H−1

t=0 .

Proof: We consider a fixed x0 and a fixed sequence of noises {wt}H−1
t=0 . Recall that for ut, we can write it as:

ut = Mtx0 +

t−1∑
τ=0

Mτ ;twτ ,

which is clearly linear with respect to the parameterization {Mt;M0;t, . . .Mt−1;t}.
For xt, we can show by induction that it is linear with respect to {Mτ ;M0;τ , . . .Mτ−1;τ}t−1

τ=0. Note that it is clearly
true for x0 which is independent of any parameterizations. Assume this claim holds for xt with t ≥ 0, we now check
xt+1. We have:

xt+1 = Axt +But = Axt +BMtx0 +

t−1∑
τ=0

BMτ ;twτ

Note that by inductive hypothesis xt is linear with respect to {Mτ ;M0;τ , . . .Mτ−1;τ}t−1
τ=0, and the part BMtx0 +∑t−1

τ=0BMτ ;twτ is clearly linear with respect to {Mt;M0;t, . . .Mt−1;t}. Together, this implies that xt+1 is linear
with respect to {Mτ ;M0;τ , . . .Mτ−1;τ}tτ=0, which concludes that for any xt with t = 0, . . . ,H − 1, we have xt is
linear with respect to {Mτ ;M0;τ , . . .Mτ−1;τ}H−1

τ=0 .

Note that the trajectory total cost is
∑H−1
t=0 c(xt, ut). Since ct is convex with respect to xt and ut, and xt and

ut are linear with respect to {Mτ ;M0;τ , . . .Mτ−1;τ}H−1
τ=0 , we have that

∑H−1
t=0 ct(xt, ut) is convex with respect to

{Mτ ;M0;τ , . . .Mτ−1;τ}H−1
τ=0 .

In last step we can simply take expectation with respect to x0 and w1, . . . , wH−1. By linearity of expectation, we
conclude the proof.

The above immediately suggests that (sub) gradient-based algorithms such as projected gradient descent on parameters
{Mt,M0;t, . . .Mt−1;t}H−1

t=0 can converge to the globally optimal solutions for any convex function ct. Recall that the
best linear controllers {−K?

t }H−1
t=0 has its own corresponding parameterization {M?

t ,M
?
0;t, . . . ,M

?
t−1;t}H−1

t=0 . Thus
gradient-based optimization (with some care of the boundness of the parameters {M?

t ,M
?
0;t, . . . ,M

?
t−1;t}H−1

t=0 ) can
find a solution that at least as good as the best linear controllers {−K?

t }H−1
t=0 .

Remark The above claims easily extend to time-dependent transition and cost function, i.e., At, Bt, ct are time-
dependent. One can also extend it to episodic online control setting with adversarial noises wt and adversarial cost
functions using no-regret online convex programming algorithms [Shalev-Shwartz, 2011]. In episodic online control,
every episode k, an adversary determines a sequence of bounded noises wk0 , . . . , w

k
H−1, and cost function ck(x, u);

the learner proposes a sequence of controllers π̃k = {Mk
t ,M

k
0;t, . . . ,M

k
t−1;t}H−1

t=0 and executes them (learner does
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not know the cost function ck until the end of the episode, and the noises are revealed in a way when she observes
xkt and calculates wkt−1 as xkt −Axkt−1 −Bukt−1); at the end of the episode, learner observes ck and suffers total cost∑H−1
t=0 ck(xkt , u

k
t ). The goal of the episodic online control is to be no-regret with respect to the best linear controllers

in hindsight:

K−1∑
k=0

H−1∑
t=0

ck(xkt , u
k
t )− min

{−K?
t }
H−1
t=0

K−1∑
k=0

Jk({−K?
t }H−1
t=0 ) = o(K),

where we denote Jk({−K?
t }H−1
t=0 ) as the total cost of executing {−K?

t }H−1
t=0 in episodic k under ck and noises {wkt },

i.e.,
∑H−1
t=0 c(xt, ut) with ut = −K?

t xt and xt+1 = Axt +But + wkt , for all t.

16.6 Bibliographic Remarks and Further Readings

The basics of optimal control theory can be found in any number of standards text [Anderson and Moore, 1990, Evans,
2005, Bertsekas, 2017]. The primal and dual formulations for the continuous time LQR are derived in Balakrishnan
and Vandenberghe [2003], while the dual formulation for the discrete time LQR, that we us here, is derived in Cohen
et al. [2019].

The treatment of Gauss-Newton, NPG, and PG algorithm are due to Fazel et al. [2018]. We have only provided the
proof for the Gauss-Newton case based; the proofs of convergence rates for NPG and PG can be found in Fazel et al.
[2018].

For many applications, the finite horizon LQR model is widely used as a model of locally linear dynamics, e.g. [Ahn
et al., 2007, Todorov and Li, 2005, Tedrake, 2009, Perez et al., 2012]. The issue of instabilities are largely due to
model misspecification and in the accuracy of the Taylor’s expansion; it is less evident how the infinite horizon LQR
model captures these issues. In contrast, for MDPs, practice tends to deal with stationary (and discounted) MDPs,
due that stationary policies are more convenient to represent and learn; here, the non-stationary, finite horizon MDP
model tends to be more of theoretical interest, due to that it is straightforward (and often more effective) to simply
incorporate temporal information into the state. Roughly, if our policy is parametric, then practical representational
constraints leads us to use stationary policies (incorporating temporal information into the state), while if we tend
to use non-parametric policies (e.g. through some rollout based procedure, say with “on the fly” computations like
in model predictive control, e.g. [Williams et al., 2017]), then it is often more effective to work with finite horizon,
non-stationary models.

Sample Complexity and Regret for LQRs. We have not treated the sample complexity of learning in an LQR (see
[Dean et al., 2017, Simchowitz et al., 2018, Mania et al., 2019] for rates). Here, the basic analysis follows from the
online regression approach, which was developed in the study of linear bandits [Dani et al., 2008, Abbasi-Yadkori
et al., 2011]; in particular, the self-normalized bound for vector-valued martingales [Abbasi-Yadkori et al., 2011] (see
Theorem A.9) provides a direct means to obtain sharp confidence intervals for estimating the system matrices A and
B from data from a single trajectory (e.g. see [Simchowitz and Foster, 2020]).

Another family of work provides regret analyses of online LQR problems [Abbasi-Yadkori and Szepesvári, 2011,
Dean et al., 2018, Mania et al., 2019, Cohen et al., 2019, Simchowitz and Foster, 2020]. Here, naive random search
suffices for sample efficient learning of LQRs [Simchowitz and Foster, 2020]. For the learning and control of more
complex nonlinear dynamical systems, one would expect this is insufficient, where strategic exploration is required
for sample efficient learning; just as in the case for MDPs (e.g. the UCB-VI algorithm).

Convex Parameterization of Linear Controllers The convex parameterization in Section 16.5 is based on [Agar-
wal et al., 2019] which is equivalent to the System Level Synthesis (SLS) parameterization [Wang et al., 2019]. Agar-
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wal et al. [2019] uses SLS parameterization in the infinite horizon online control setting and leverages a reduction to
online learning with memory. Note that in episodic online control setting, we can just use classic no-regret online
learner such as projected gradient descent [Zinkevich, 2003]. For partial observable linear systems, the classic Youla
parameterization[Youla et al., 1976] introduces a convex parameterization. We also refer readers to [Simchowitz et al.,
2020] for more detailed discussion about Youla parameterization and the generalization of Youla parameterization.
Moreover, using the performance difference lemma, the exact optimal control policy for adversarial noise with full
observations can be exactly characterized Foster and Simchowitz [2020], Goel and Hassibi [2020] and yields a form
reminiscent of the SLS parametrization Wang et al. [2019].
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Chapter 17

Partially Observable Markov Decision
Processes

To be added...
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Appendix A

Concentration

Lemma A.1. (Hoeffding’s inequality) Suppose X1, X2, . . . Xn are a sequence of independent, identically distributed
(i.i.d.) random variables with mean µ. Let X̄n = n−1

∑n
i=1Xi. Suppose that Xi ∈ [b−, b+] with probability 1, then

P (X̄n ≥ µ+ ε) ≤ e−2nε2/(b+−b−)2 .

Similarly,
P (X̄n ≤ µ− ε) ≤ e−2nε2/(b+−b−)2 .

The Chernoff bound implies that with probability 1− δ:

X̄n − EX ≤ (b+ − b−)
√

ln(1/δ)/(2n) .

Now we introduce the definition of subGaussian random variables.

Definition A.2. [Sub-Gaussian Random Variable] A random variable X is σ-subGaussian if for all λ ∈ R, it holds
that E [exp(λX)] ≤ exp

(
λ2σ2/2

)
.

One can show that a Gaussian random variable with zero mean and standard deviation σ is a σ-subGaussian random
variable.

The following theorem shows that the tails of a σ-subGaussian random variable decay approximately as fast as that of
a Gaussian variable with zero mean and standard deviation σ.

Theorem A.3. If X is a σ-subGaussian, then for any ε > 0, we have Pr (X ≥ ε) ≤ exp
(
− ε2

2σ2

)
.

The following lemma shows that the sum of independent sub-Gaussian variables is still sub-Gaussian.

Lemma A.4. Suppose thatX1 andX2 are independent and σ1 and σ2 subGaussian, respectively. Then for any c ∈ R,
we have cX being |c|σ-subGaussian. We also have X1 +X2 being

√
σ2

1 + σ2
2-subGaussian.

Theorem A.5 (Hoeffding-Azuma Inequality). Suppose X1, . . . , XT is a martingale difference sequence where each
Xt is a σt sub-Gaussian, Then, for all ε > 0 and all positive integer N ,

P

(
N∑
i=1

Xi ≥ ε
)
≤ exp

(
−ε2

2
∑N
i=1 σ

2
i

)
.
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Lemma A.6. (Bernstein’s inequality) SupposeX1, . . . , Xn are independent random variables. Let X̄n = n−1
∑n
i=1Xi,

µ = EX̄n, and Var(Xi) denote the variance of Xi. If Xi − EXi ≤ b for all i, then

P (X̄n ≥ µ+ ε) ≤ exp

[
− n2ε2

2
∑n
i=1 Var(Xi) + 2nbε/3

]
.

If all the variances are equal, the Bernstein inequality implies that, with probability at least 1− δ,

X̄n − EX ≤
√

2Var(X) ln(1/δ)/n+
2b ln(1/δ)

3n
.

Lemma A.7 (Bernstein’s Inequality for Martingales). Suppose X1, X2 . . . is a martingale difference sequence where
|Xi| ≤M ∈ R+ almost surely. Then for all positive t and n ∈ N+, we have:

P

(
n∑
i=1

Xi ≥ t
)
≤ exp

(
− t2/2∑n

i=1 E [X2
i |X<i] +Mt/3

)
.

The following concentration bound is a simple application of the McDiarmid’s inequality [McDiarmid, 1989] (e.g. see
[Hsu et al., 2008] for proof).

Proposition A.8. (Concentration for Discrete Distributions) Let z be a discrete random variable that takes values in
{1, . . . , d}, distributed according to q. We write q as a vector where ~q = [Pr(z = j)]dj=1. Assume we have N iid
samples, and that our empirical estimate of ~q is [q̂]j =

∑N
i=1 1[zi = j]/N .

We have that ∀ε > 0:
Pr
(
‖q̂ − ~q‖2 ≥ 1/

√
N + ε

)
≤ e−Nε2 .

which implies that:
Pr
(
‖q̂ − ~q‖1 ≥

√
d(1/
√
N + ε)

)
≤ e−Nε2 .

Lemma A.9 (Self-Normalized Bound for Vector-Valued Martingales; [Abbasi-Yadkori et al., 2011]). Let {εi}∞i=1 be
a real-valued stochastic process with corresponding filtration {Fi}∞i=1 such that εi is Fi measurable, E[εi|Fi−1] = 0,
and εi is conditionally σ-sub-Gaussian with σ ∈ R+. Let {Xi}∞i=1 be a stochastic process withXi ∈ H (some Hilbert
space) and Xi being Ft measurable. Assume that a linear operator Σ : H → H is positive definite, i.e., x>Σx > 0
for any x ∈ H. For any t, define the linear operator Σt = Σ0 +

∑t
i=1XiX

>
i (here xx> denotes outer-product inH).

With probability at least 1− δ, we have for all t ≥ 1:∥∥∥∥∥
t∑
i=1

Xiεi

∥∥∥∥∥
2

Σ−1
t

≤ σ2 log

(
det(Σt) det(Σ0)−1

δ2

)
.

Theorem A.10 (OLS with a fixed design). Consider a fixed dataset D = {xi, yi}Ni=1 where xi ∈ Rd, and yi =
(θ?)>xi + εi, where {εi}Ni=1 are independent σ-sub-Gaussian random variables, and E[εi] = 0. Denote Λ =∑N
i=1 xix

>
i , and we further assume that Λ is full rank such that Λ−1 exists. Denote θ̂ as the least squares solu-

tion, i.e., θ̂ = Λ−1
∑N
i=1 xiyi. Pick δ ∈ (0, 1), with probability at least 1− δ, we have:∥∥∥θ̂ − θ?∥∥∥2

Λ
≤ σ2(d+

√
d ln(1/δ) + 2 ln(1/δ)).

The proof of the above theorem is standard (e.g. the proof can be easily adapted from Lemma 6 in [Hsu et al., 2012]).

Lemma A.11 (Least Squares Generalization Bound). Given a dataset D = {xi, yi}ni=1 where xi ∈ X and xi, yi ∼ ν,
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yi = f?(xi) + εi, where |yi| ≤ Y,maxx |f?(x)| ≤ Y and |εi| ≤ σ for all i, and {εi} are independent from each other.
Given a function class F : X 7→ [0, Y ], we assume approximate realizable, i.e., minf∈F Ex∼ν |f?(x) − f(x)|2 ≤
εapprox. Denote f̂ as the least square solution, i.e., f̂ = argminf∈F

∑n
i=1 (f(xi)− yi)2. With probability at least

1− δ, we have:

Ex∼ν
(
f̂(x)− f?(x)

)2

≤ 22Y 2 ln(|F|/δ)
n

+ 20εapprox.

Proof:

For notation simplicity, let us denote f?(x) := E[y|x]. Let us consider a fixed function f ∈ F .

Denote random variables zfi := (f(xi) − yi)
2 − (f?(xi) − yi)

2. We now show that E[zfi ] = ‖f − f?‖22,v , and
E[(zfi )2] ≤ 4Y 2‖f − f?‖22,ν :

E[zfi ] = E [(f(xi)− f?(xi))(f(xi) + f?(xi)− 2yi)] = E[(f(xi)− f?(xi))2] := ‖f − f?‖22,ν

where the last equality uses the fact that E[yi|xi] = f?(xi). For the second moment, we have:

E[(zfi )2] = E
[
(f(xi)− f?(xi))2(f(xi) + f?(xi)− 2yi)

2
]
≤ 4Y 2E[(f(xi)− f?(xi))2] := 4Y 2‖f − f?‖22,ν ,

where the inequality uses the conditions that ‖f?‖∞ ≤ Y, ‖f‖∞ ≤ Y, |yi| ≤ Y . Now we can bound the deviation
from the empirical mean

∑n
i=1 z

f
i /n to its expectation ‖f − f?‖22,ν using Bernstein’s inequality. Together with a

union bound over all f ∈ F , with probability at least 1− δ, we have

∀f ∈ F : ‖f − f?‖22,ν −
n∑
i=1

zfi /n ≤

√
8Y 2‖f − f?‖22,ν ln(|F|/δ)

n
+

4Y 2 ln(|F|/δ)
n

. (0.1)

Below we first bound
∑n
i=1 z

f̂
i /n where recall f̂ is the least squares solution.

Denote f̃ := argminf∈F ‖f − f?‖22,ν . Note that f̃ is independent of the dataset by its definition. Our previous

calculation implies that E[zf̃i ] = ‖f̃ − f?‖22,ν , and E[(zf̃i )2] ≤ 4Y 2‖f̃ − f?‖22,ν . Directly applying Bernstein’s

inequality to bound
∑n
i=1 z

f̃
i /n− ‖f̃ − f?‖22,ν , we have that with probability at least 1− δ:

n∑
i=1

zf̃i /n− ‖f̃ − f?‖22,ν ≤

√
8Y 2‖f̃ − f?‖22,ν ln(1/δ)

n
+

4Y 2 ln(1/δ)

3n
.

Using this inequality, we discuss two cases. First when
∑n
i=1 z

f̃
i /n ≥ Y 2 ln(1/δ)/n. In this case, the above inequality

implies that:

n∑
i=1

zf̃i /n− ‖f̃ − f?‖22,ν ≤

√√√√8‖f̃ − f?‖22,ν ·
n∑
i=1

zf̃i /n+
4Y 2 ln(1/δ)

3n
.

Solve for
∑n
i=1 z

f̃
i /n, we get:

n∑
i=1

zf̃i /n ≤ 10‖f̃ − f?‖22,ν +
8Y 2 ln(1/δ)

3n
.
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For the other case where
∑n
i=1 z

f̃
i /n ≤ Y 2 ln(1/δ)/n, we immediately have:

n∑
i=1

zf̃i /n ≤ Y 2 ln(1/δ)/n ≤ 10‖f̃ − f?‖22,ν +
8Y 2 ln(1/δ)

3n
.

Thus
∑n
i=1 z

f̃
i /n ≤ 10‖f̃ − f?‖22,ν + 8Y 2 ln(1/δ)

3n regardless.

Since ‖f̃ − f?‖22,ν ≤ εapprox by the assumption, we can conclude that:

n∑
i=1

zf̃i /n ≤ 10εapprox +
8Y 2 ln(1/δ)

3n
.

Note that by definition of f̂ , we have
∑n
i=1 z

f̂
i ≤

∑n
i=1 z

f̃
i , which implies that:

n∑
i=1

zf̂i /n ≤ 10εapprox +
8Y 2 ln(1/δ)

3n
,

which concludes the upper bound of
∑n
i=1 z

f̂
i /n.

Going back to Eq. 0.1, by setting f = f̂ there, and use the upper bound on
∑n
i=1 z

f̂
i /n, we have that:

‖f̂ − f?‖22,ν ≤

√
8Y 2‖f̂ − f?‖22,ν ln(|F|/δ)

n
+

4Y 2 ln(|F|/δ)
n

+
8Y 2 ln(|F|/δ)

3n
+ 10εapprox.

Solve for ‖f̂ − f?‖22,ν from the above inequality, we get:

‖f̂ − f?‖22,ν ≤
22Y 2 ln(|F|/δ)

n
+ 20εapprox.

This concludes the proof.

Lemma A.12 (Uniform convergence for Bellman error under linear function hypothesis class ). Given a feature
φ : S × A 7→ Rd with ‖φ(s, a)‖2 ≤ 1,∀s, a. Define Hh = {w>φ(s, a) : ‖w‖2 ≤ W,w ∈ Rd, ‖w>φ(·, ·)‖∞ ≤ H}.
Given g ∈ H, denote `(s, a, s′, g) as follows:

`(s, a, s′, h, g) =
1{πh,g(s) = a}

1/A

(
w>h φ(s, a)− r(s, a)−max

a′
w>h+1φ(s′, a′)

)
.

For any distribution ν ∈ ∆(S), with probability 1 − δ over the randomness of the m i.i.d triples {si, ai, s′i}mi=1 with
si ∼ µ, ai ∼ UnifA, s

′
i ∼ Ph(·|si, ai), we have:

max
g∈H

∣∣∣∣∣Es∼ν,a∼UnifA,s′∼Ph(·|s,a)[`(s, a, s
′, h, g)]−

m∑
i=1

`(si, ai, s
′
i, h, g)/m

∣∣∣∣∣ ≤ 3HA

√
2d ln(1 + 4AWm) + ln(1/δ)

m
.

Similarly, when `(s, a, s′, g) is defined as:

`(s, a, s′, h, g) = w>h φ(s, a)− r(s, a)−max
a′

w>h+1φ(s′, a′),

for any distribution ν ∈ ∆(S × A), with probability 1− δ over randomness of the m i.i.d triples {si, ai, s′i}mi=1 with
si, ai ∼ ν, s′i ∼ Ph(·|si, ai), we have:

max
g∈H

∣∣∣∣∣Es∼ν,a∼UnifA,s′∼Ph(·|s,a)[`(s, a, s
′, h, g)]−

m∑
i=1

`(si, ai, s
′
i, h, g)/m

∣∣∣∣∣ ≤ 3H

√
2d ln(1 + 4Wm) + ln(1/δ)

m
.
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Proof: The proof uses the standard ε-net argument. Define Nε as the ε-net for W = {w : w ∈ Rd, ‖w‖2 ≤
W,w>φ(·, ·) ∈ H}. Standard ε-net argument shows that |Nε| ≤ (1 +W/ε)d. Denote g′ = {(w′h)>φ}H−1

h=0 , we have:

|`(s, a, s′, h, g)− `(s, a, s′, h, g′)| ≤ 1{πh,g(s) = a}
1/A

[
|w>h φ(s, a)− (w′h)>φ(s, a)|+ max

a′
|w>h+1φ(s′, a′)− (w′h+1)>φ(s′, a′)|

]
≤ A sup

s,a
|w>h φ(s, a)− (w′h)>φ(s, a)|+A sup

s,a
|w>h+1φ(s, a)− (w′h+1)>φ(s, a)|

≤ A‖wh − w′h‖2 +A‖wh+1 − w′h+1‖2.

Thus, if ‖wh − w′h‖2 ≤ ε, ‖wh+1 − w′h+1‖2 ≤ ε, we have |`(s, a, s′, h, g)− `(s, a, s′, h, g′)| ≤ 2Aε.

Consider a wh ∈ Nε, wh+1 ∈ Nε, via Hoeffding’s inequality, we have that with probability at least 1− δ:∣∣E[`(s, a, s′, h, (wh, wh+1))]− Ē[`(s, a, s′, h, (wh, wh+1))]
∣∣ ≤ 2HA

√
ln(1/δ)/m.

where for notation simplicity, we denote Ē as the empirical average over the m data triples. Apply a union bound over
all wh ∈ Nε and wh+1 ∈ Nε, we have that with probability at least 1− δ:

∀wh ∈ Nε, wh+1 ∈ Nε :
∣∣E[`(s, a, s′, h, (wh, wh+1))]− Ē[`(s, a, s′, h, (wh, wh+1))]

∣∣ ≤ 2HA
√

2 ln(|Nε|/δ)/m.

Thus for any wh ∈ W, wh+1 ∈ W , we have:∣∣E[`(s, a, s′, h, (wh, wh+1))]− Ē[`(s, a, s′, h, (wh, wh+1))]
∣∣ ≤ 2HA

√
2 ln(|Nε|/δ)/m+ 4Aε.

Set ε = 1/(4Am), we have:∣∣E[`(s, a, s′, h, (wh, wh+1))]− Ē[`(s, a, s′, h, (wh, wh+1))]
∣∣ ≤ 2HA

√
(2d ln(1 + 4AWm) + ln(1/δ))/m+ 1/m

≤ 3HA

√
2d ln(1 + 4AWm) + ln(1/δ)

m
.

This proves the first claim in the lemma.

The second claim in the lemma can be proved in a similar way, noting that without the importance weighting term on
the loss `, we have:

|`(s, a, s′, h, g)− `(s, a, s′, h, g′)| ≤ ‖wh − w′h‖2 + ‖wh+1 − w′h+1‖2.
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