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Chapter 0

Notation

The reader might find it helpful to refer back to this notation section.

• For a vector v, we let (v)2,
√
v, and |v| be the component-wise square, square root, and absolute value operations.

• Inequalities between vectors are elementwise, e.g. for vectors v, v′, we way v ≤ v′, if the inequality holds
elementwise.

• For a vector v, we refer to the j-th component of this vector by either v(j) or [v]j

• Denote the variance of any real valued f under a distribution D as:

VarD(f) := Ex∼D[f(x)2]− (Ex∼D[f(x)])2

• It is helpful to overload notation and let P also refer to a matrix of size (S · A) × S where the entry P(s,a),s′

is equal to P (s′|s, a). We also will define Pπ to be the transition matrix on state-action pairs induced by a
deterministic policy π. In particular, Pπ(s,a),(s′,a′) = P (s′|s, a) if a′ = π(s′) and Pπ(s,a),(s′,a′) = 0 if a′ 6= π(s′).
With this notation,

Qπ = (1− γ)r + γPV π

Qπ = (1− γ)r + γPπQπ

Qπ = (1− γ)(I − γPπ)−1r

• For a vector Q ∈ R|S×A|, denote the greedy policy and value as:

πQ(s) := argmaxa∈AQ(s, a)

VQ(s) := max
a∈A

Q(s, a). .

• For a vector Q ∈ R|S×A|, the Bellman optimality operator T : R|S×A| → R|S×A| is defined as:

T Q := (1− γ)r + γPVQ . (0.1)

7
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Markov Decision Processes
Alekh Agarwal, Nan Jiang, Sham M. Kakade Chapter 1

1.1 Markov Decision Processes

In reinforcement learning, the interactions between the agent and the environment are often described by a Markov
Decision Process (MDP) [Puterman, 1994], specified by:

• State space S. In this course we only consider finite state spaces.

• Action space A. In this course we only consider finite action spaces.

• Transition function P : S × A → ∆(S), where ∆(S) is the space of probability distributions over S (i.e., the
probability simplex). P (s′|s, a) is the probability of transitioning into state s′ upon taking action a in state s.
We use Ps,a to denote the vector P (·

∣∣ s, a).

• Reward function r : S ×A → [0, 1]. r(s, a) is the immediate reward associated with taking action a in state s.

• Discount factor γ ∈ [0, 1), which defines a horizon for the problem.

1.1.1 Interaction protocol

In a given MDPM = (S,A, P, r, γ), the agent interacts with the environment according to the following protocol: the
agent starts at some state s0; at each time step t = 0, 1, 2, . . ., the agent takes an action at ∈ A, obtains the immediate
reward rt = r(st, at), and observes the next state st+1 sampled according to st+1 ∼ P (·|st, at). The interaction
record at time t

τt = (s0, a0, r1, s1, . . . , st)

is called a trajectory, which includes the observed state at time t.

In some situations, it is necessary to specify how the initial state s0 is generated. We consider s0 sampled from an
initial distribution µ ∈ ∆(S). When µ is of importance to the discussion, we include it as part of the MDP definition,
and write M = (S,A, P, r, γ, µ).

1.1.2 The objective, policies, and values

In the most general setting, a policy specifies a decision-making strategy in which the agent chooses actions adaptively
based on the history of observations; precisely, a policy is a mapping from a trajectory to an action, i.e. π : H → A
where H is the set of all possibly trajectories. A deterministic, stationary policy π : S → A specifies a decision-
making strategy in which the agent chooses actions adaptively based on the current state, i.e., at = π(st). The
agent may also choose actions according to a stochastic policy π : S → ∆(A), and, overloading notation, we write
at ∼ π(·|st). A deterministic policy is its special case when π(s) is a point mass for all s ∈ S.

For a fixed policy and a starting state s0 = s, we define the value function V πM : S → R as the average, discounted
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sum of future rewards

V πM (s) = (1− γ)E
[ ∞∑
t=0

γtr(st, at)
∣∣ π, s0 = s

]
.

where expectation is with respect to the randomness of the trajectory, that is, the randomness in state transitions and
the stochasticity of π. Here, the factor of 1− γ serves as a normalizing factor: since r(s, a) is bounded between 0 and
1, we have 0 ≤ V πM (s) ≤ 1.

Similarly, the action-value (or Q-value) function QπM : S ×A → R is defined as

QπM (s, a) = (1− γ)E
[ ∞∑
t=0

γtr(st, at)
∣∣ π, s0 = s, a0 = a

]
.

Given a state s, the goal of the agent is to find a policy π that maximizes the value, i.e. the optimization problem the
agent seeks to solve is:

max
π

V πM (s) (1.1)

The dependence of on M may be dropped when it is clear from context.

Example 1.1 (Navigation). Navigation is perhaps the simplest to see example of RL. The state of the agent is their
current location. The four actions might be moving 1 step along each of east, west, north or south. The transitions
in the simplest setting are deterministic. Taking the north action moves the agent one step north of their location,
assuming that the size of a step is standardized. The agent might have a goal state g they are trying to reach, and the
reward is 0 until the agent reaches the goal, and 1 upon reaching the goal state. Since the discount factor γ < 1, there is
incentive to reach the goal state earlier in the trajectory. As a result, the optimal behavior in this setting corresponds to
finding the shortest path from the initial to the goal state, and the value function of a state, given a policy is (1− γ)γd,
where d is the number of steps required by the policy to reach the goal state.

Example 1.2 (Conversational agent). This is another fairly natural RL problem. The state of an agent can be the
current transcript of the conversation so far, along with any additional information about the world, such as the context
for the conversation, characteristics of the other agents or humans in the conversation etc. Actions depend on the
domain. In the rawest form, we can think of it as the next statement to make in the conversation. Sometimes,
conversational agents are designed for task completion, such as travel assistant or tech support or a virtual office
receptionist. In these cases, there might be a predefined set of slots which the agent needs to fill before they can find a
good solution. For instance, in the travel agent case, these might correspond to the dates, source, destination and mode
of travel. The actions might correspond to natural language queries to fill these slots.

In task completion settings, reward is naturally defined as a binary outcome on whether the task was completed or not,
such as whether the travel was successfully booked or not. Depending on the domain, we could further refine it based
on the quality or the price of the travel package found. In more generic conversational settings, the ultimate reward is
whether the conversation was satisfactory to the other agents or humans, or not.

Example 1.3 (Board games). This is perhaps the most popular category of RL applications, where RL has been
successfully applied to solve Backgammon, Go and various forms of Poker. For board games, the usual setting consists
of the state being the current game board, actions being the potential next moves and reward being the eventual win/loss
outcome or a more detailed score when it is defined in the game.

1.1.3 Bellman consistency equations for stationary policies

By definition, V π and Qπ satisfy the following Bellman consistency equations: for all s ∈ S, a ∈ A,

V π(s) = Qπ(s, π(s)).

Qπ(s, a) = (1− γ)r(s, a) + γEs′∼P (·|s,a)

[
V π(s′)

]
,

(1.2)
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where we are treating π as a deterministic policy.

It is helpful to view V π as vector of length S and Qπ and r as vectors of length S · A. We overload notation and let P
also refer to a matrix of size (S · A)× S where the entry P(s,a),s′ is equal to P (s′|s, a). We also will define Pπ to be
the transition matrix on state-action pairs induced by a deterministic policy π. In particular,

Pπ(s,a),(s′,a′) :=

{
P (s′|s, a) if a′ = π(s′)

0 if a′ 6= π(s′)

For a randomized stationary policy, we have Pπ(s,a),(s′,a′) = P (s′|s, a)π(a′|s′). With this notation, it is straightforward
to verify:

Qπ = (1− γ)r + γPV π (1.3)
Qπ = (1− γ)r + γPπQπ . (1.4)

The above implies that:
Qπ = (1− γ)(I − γPπ)−1r (1.5)

where I is the identity matrix. To see that the (I−γPπ) is invertible, observe that for any non-zero vector x ∈ R|S||A|,

‖(I − γPπ)x‖∞ = ‖x− γPπx‖∞
≥ ‖x‖∞ − γ‖Pπx‖∞ (triangular inequality for norms)
≥ ‖x‖∞ − γ‖x‖∞ (each element of Pπx is a convex average of x)
= (1− γ)‖x‖∞ > 0 (γ < 1, x 6= 0)

which implies I − γPπ is full rank.

1.1.4 Bellman optimality equations

Due to the Markov structure, there exists a single stationary and deterministic policy that simultaneously maximizes
V π(s) for all s ∈ S and maximizes Qπ(s, a) for all s ∈ S, a ∈ A [Puterman, 1994]; we denote this optimal policy as
π?M (or π?). We use V ? and Q? as a shorthand for V π

?

and Qπ
?

, respectively.

V ? and Q? satisfy the following set of Bellman optimality equations [Bellman, 1956]: for all s ∈ S, a ∈ A,

V ?(s) = max
a∈A

Q?(s, a).

Q?(s, a) = (1− γ)r(s, a) + γEs′∼P (·|s,a)

[
V ?(s′)

]
.

(1.6)

Let us use shorthand πQ to denote the greedy policy with respect to a vector Q ∈ R|S×A|, i.e

πQ(s) := argmaxa∈AQ(s, a) .

With this notation, the optimal policy π? is obtained by choosing actions greedily (with arbitrary tie-breaking mecha-
nisms) with respect to Q, i.e.

π? = πQ? .

Let us also use the notation to greedily turn a vector Q ∈ R|S×A| into a vector of length |S|.

VQ(s) := max
a∈A

Q(s, a).
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The Bellman optimality operator TM : R|S×A| → R|S×A| is defined as follows: when applied to some vector
Q ∈ R|S×A|,

T Q := (1− γ)r + γPVQ . (1.7)

This allows us to rewrite Equation 1.6 in the concise form: Q? = T Q?, i.e. Q? is a fixed point of the operator T . The
classic result of [Bellman, 1956] shows that if Q satisfies Q = T Q, then Q = Q?. We state the result below formally.

Theorem 1.4. LetQ?(s, a) = maxπ∈ΠQ
π(s, a) where Π is the space of all (non-stationary and randomized) policies.

We have that

• There exists a stationary and deterministic policy π such that Qπ = Q?

• A vector Q ∈ RS×A is equal to Q? if and only if it satisfies Q = T Q.

Proof: First observe that:

Q?(s, a)

= (1− γ)E
[ ∞∑
t=0

γtr(st, at)
∣∣ s0 = s, a0 = a

]
= (1− γ)E

[
r(s0, a0) + . . . r(sτ−1, aτ−1) + γτE[

∞∑
t=τ

γtr(st+τ , at+τ )|sτ = s, aτ = a]
∣∣ s0 = s, a0 = a

]
= (1− γ)E

[
r(s0, a0) + . . . r(sτ−1, aτ−1) + γτ max

π

(
E[

∞∑
t=0

γtr(st+τ , at+τ )|π, sτ = s, aτ = a]

) ∣∣ s0 = s, a0 = a
]
.

where the inner max is over all policies which may also use the history of information before time τ . Note that sτ and
aτ the future evolution at time τ does not depend on the (s0, a0, . . . sτ−1, aτ−1), which implies that the max value
can be achieved with a policy that, at time τ , chooses an action that only depends on sτ . This proves the stationarity
claim. Furthermore, by linearity of expectation, the choice of aτ can made deterministically.

For the second claim, we first show that Q? satisfies Q? = T Q?. We need only consider deterministic policies. We
have:

Q?(s, a) = max
π

Qπ(s, a) = max
π

{
(1− γ)r(s.a) + γEs′∼P (·|s,a)[V

π(s′)]
}

= (1− γ)r(s, a) + γEs′∼P (·|s,a)[max
π

V π(s′)]

= (1− γ)r(s, a) + γEs′∼P (·|s,a)[max
π

Qπ(s′, π(s′)]

= (1− γ)r(s, a) + γEs′∼P (·|s,a)[max
π,a′

Qπ(s′, a′)]

= (1− γ)r(s, a) + γEs′∼P (·|s,a)[max
a′

Q?(s′, a′)].

Thus Q? satisfies the Bellman optimality equations.

For the converse, suppose Q = T Q for some Q. For π = πQ, this implies that Q = (1 − γ)r + γPπQQ, and so
Q = Qπ , i.e. Q is the action value of the policy πQ. Now observe for any other policy π′:

Qπ
′
−Q = (1− γ)

(
(I − γPπ

′
)−1r − (I − γPπ)−1r

)
= (I − γPπ

′
)−1((I − γPπ)− (I − γPπ

′
))Qπ

= γ(I − γPπ
′
)−1(Pπ

′
− Pπ)Qπ .
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The proof is completed by noting that (Pπ
′ − Pπ)Qπ ≤ 0. To see this, observe that:

[(Pπ
′
− Pπ)Qπ]s,a = Es′∼P (·|s,a)[Q

π(s′, π′(s′))−Qπ(s′, π(s′))] ≤ 0

where we use π = πQ in the last step.

1.2 Planning in MDPs

Planning refers to the problem of computing π?M given the MDP specification M = (S,A, P, r, γ). This section
reviews classical planning algorithms that compute Q?.

1.2.1 Q-Value Iteration

A simple algorithm is to iteratively applying the fixed point mapping: starting at some Q, we iteratively apply T :

Q← T Q ,

This is algorithm is referred to as Q-value iteration.

Lemma 1.5. (contraction) For any two vectors Q,Q′ ∈ R|S||A|,

‖T Q− T Q′‖∞ ≤ γ‖Q−Q′‖∞

Proof: First, let us show that for all s, |VQ(s) − VQ′(s)| ≤ maxa∈A |Q(s, a) − Q′(s, a)|. Assume VQ(s) > VQ′(s)
(the other direction is symmetric), and let a be the greedy action for Q at s. Then

|VQ(s)− VQ′(s)| = Q(s, a)−max
a′∈A

Q′(s, a′) ≤ Q(s, a)−Q′(s, a) ≤ max
a∈A
|Q(s, a)−Q′(s, a)|.

Using this,

‖T Q− T Q′‖∞ = γ‖PVQ − PVQ′‖∞
= γ‖P (VQ − VQ′)‖∞
≤ γ‖VQ − VQ′‖∞
= γmax

s
|VQ(s)− VQ′(s)|

≤ γmax
s

max
a
|Q(s, a)−Q′(s, a)|

= γ‖Q−Q′‖∞

where the first inequality uses that each element of P (VQ − VQ′) is a convex average of VQ − VQ′ and the second
inequality uses our claim above.

The following result bounds the suboptimality of the greedy policy itself, based on the error in Q-value function.

Lemma 1.6. [Singh and Yee [1994]] For any vector Q ∈ R|S||A|,

V πQ ≥ V ? − 2‖Q−Q?‖∞
1− γ

1.

where 1 denotes the vector of all ones.
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Proof: Fix state s and let a = πQ(s). We have:

V ?(s)− V πQ(s) =Q?(s, π?(s))−QπQ(s, a)

=Q?(s, π?(s))−Q?(s, a) +Q?(s, a)−QπQ(s, a)

=Q?(s, π?(s))−Q?(s, a) + γEs′∼P (·|s,a)[V
?(s′)− V πQ(s′)]

≤ Q?(s, π?(s))−Q(s, π?(s)) +Q(s, a)−Q?(s, a)

+ γEs′∼P (s,a)[V
?(s′)− V πQ(s′)]

≤ 2‖Q−Q?‖∞ + γ‖V ? − V πQ‖∞.

where the first inequality uses Q(s, π?(s)) ≤ Q(s, πQ(s)) = Q(s, a) due to the definition of πQ.

Theorem 1.7. (Q-value iteration convergence). Set Q(0) = 0. For k = 0, 1, . . ., suppose:

Q(k+1) = T Q(k)

Let π(k) = πQ(k) . For k ≥ log 2
ε(1−γ)/(1− γ),

V π
(k)

≥ V ? − ε1 .

Proof: Since ‖Q?‖∞ ≤ 1, Q(k) = T kQ(0) and Q? = T Q?, Lemma 1.5 gives

‖Q(k) −Q?‖∞ = ‖T kQ(0) − T kQ?‖∞ ≤ γk‖Q(0) −Q?‖∞ = (1− (1− γ))k‖Q?‖∞ ≤ exp(−(1− γ)k) .

The proof is completed with our choice of γ and using Lemma 1.6.

1.2.2 Policy Iteration

The policy iteration algorithm starts from an arbitrary policy π0, and repeat the following iterative procedure: for
k = 0, 1, 2, . . .

1. Policy evaluation. Compute Qπk

2. Policy improvement. Update the policy:

πk+1 = πQπk

In each iteration, we compute the Q-value function of πk, using the analytical form given in Equation 1.5, and update
the policy to be greedy with respect to this newQ-value. The first step is often called policy evaluation, and the second
step is often called policy improvement.

Lemma 1.8. We have that:

1. Qπk+1 ≥ T Qπk ≥ Qπk

2. ‖Qπk+1 −Q?‖∞ ≤ γ‖Qπk −Q?‖∞

Proof: We start with the first part. Note that the policies produced in policy iteration are always deterministic, so
V πk(s) = Qπk(s, πk(s)) for all iterations k and states s. Hence,

T Qπk(s, a) = (1− γ)r(s, a) + γEs′∼P (·|s,a)[max
a′

Qπk(s′, a′)]

≥ (1− γ)r(s, a) + γEs′∼P (·|s,a)[Q
πk(s′, πk(s′))]

= Qπk(s, a).
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Using this,

Qπk+1(s, a) = (1− γ)r(s, a) + γEs′∼P (·|s,a)[Q
πk+1(s′, πk+1(s′))]

≥ (1− γ)r(s, a) + γEs′∼P (·|s,a)[Q
πk(s′, πk+1(s′))]

= (1− γ)r(s, a) + γEs′∼P (·|s,a)[max
a′

Qπk(s′, a′)]

= T Qπk(s, a)

which proves the first claim.

For the second claim,

‖Q? −Qπk+1‖∞ ≥ ‖Q? − T Qπk‖∞ = ‖T Q? − T Qπk+1‖∞ ≤ γ‖Q? −Qπk‖∞

where we have used that Q? ≥ Qπk+1 ≥ Qπk in second step and the contraction property of T (·) (see Lemma 1.5 in
the last step.

With this lemma, a convergence rate for the policy iteration algorithm immediately follows.

Theorem 1.9. (policy iteration convergence). Let π0 be any initial policy. For k ≥ log 1
ε

1−γ , the k-th policy in policy
iteration has the following performance bound:

Qπ
(k)

≥ Q? − ε .
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Sample Complexity with a Generative Model
Alekh Agarwal, Nan Jiang, Sham M. Kakade Chapter 2

2.1 The Generative Model Setting

We now characterize the optimal minimax sample complexity of estimating Q?.

We assume that the reward function is known (and deterministic). This is often a mild assumption, particularly due to
that much of the difficulty in RL is due to the uncertainty in the transition model P .

For this, we assume we have access to a generative model, which can provide us with a sample s′ ∼ P (·|s, a) upon
input of any state action pair. Suppose we call our simulator N times at each state action pair. Let P̂ be our empirical
model, defined as follows:

P̂ (s′|s, a) =
count(s′, s, a)

N

where count(s′, s, a) is the number of times the state-action pair (s, a) transitions to state s′. As the N is the number
of calls for each state action pair, the total number of calls to our generative model is |S||A|N .

We define M̂ to be the empirical MDP that is identical to the original M , except that it uses P̂ instead of P for
the transition model. When clear from context, we drop the subscript on M on the values, action values, one-step
variances, and variance. We let V̂ π , Q̂π , Q̂? π̂? denote the value function, action value function, and optimal policy in
M̂ .

2.2 Sample Complexity

2.2.1 A naive approach: accurate model estimation

Note that since P has a |S|2|A| parameters, a naive approach would be to estimate P accurately and then use our
accurate model P̂ for planning.

Theorem 2.1. Let ε ≥ 0. Suppose we obtain

# samples from generative model ≥ c

(1− γ)2

|S|2|A| log(c|S||A|/δ)
ε2

where we sample uniformly from every state action pair. Then, with probability greater than 1−δ, the following holds:

• The transition model has error bounded as:

max
s,a
‖P (·|s, a)− P̂ (·|s, a)‖1 ≤ (1− γ)2ε/2 .

• For all policies π,
‖Qπ − Q̂π‖∞ ≤ ε/2

• The estimated Q̂? has error bounded as:
‖Q? − Q̂?‖∞ ≤ ε
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2.2.2 A more refined approach: using a sparse model

In the previous approach, we are able to accurately estimate the value of every policy in the unknown MDP M .
However, with regards to planning, we only need an accurate estimate Q̂? of Q?, which we might hope would require
less samples.

Let us start with a crude bound on the optimal action-values, which shows that an improvement is possible.

Lemma 2.2. (Crude Value Bounds) Let δ ≥ 0. With probability greater than 1− δ,

‖Q? − Q̂π
?

‖∞ ≤ ∆δ,N

‖Q? − Q̂?‖∞ ≤ ∆δ,N ,

where:

∆δ,N :=
γ

1− γ

√
2 log(2|S||A|/δ)

N

Proof: We have:

‖Q? − Q̂π
?

‖∞ = γ‖Pπ
?

Q? − P̂π
?

Q̂π
?

‖∞
≤ γ‖Pπ

?

Q? − P̂π
?

Q?‖∞ + γ‖P̂π
?

Q? − P̂π
?

Q̂π
?

‖∞
= γ‖PV ? − P̂ V ?‖∞ + γ‖P̂π

?

(Q? − Q̂π
?

)‖∞
≤ γ‖(P − P̂ )V ?‖∞ + γ‖Q? − Q̂π

?

‖∞ ,

and so we have shown that:
‖Q? − Q̂π

?

‖∞ ≤
γ

1− γ
‖(P − P̂ )V ?‖∞

By applying Hoeffding’s inequality and the union bound,

‖(P − P̂ )V ?‖∞ = max
s,a
|Es′∼P (·|s,a)[V

?(s′)]− Es′∼P̂ (·|s,a)[V
?(s′)]| ≤

√
2 log(2|S||A|/δ)

N

which holds with probability greater than 1 − δ. This completes the proof of the first claim. The proof of the second
claim is analogous.

The main result in this chapter will be to improve the bound on Q̂? to be optimal:

Theorem 2.3. For δ ≥ 0 and with probability greater than 1− δ,

‖Q? − Q̂?‖∞ ≤ γ

√
c

1− γ
log(c|S||A|/δ)

N
+

cγ

(1− γ)2

log(c|S||A|/δ)
N

,

where c is an absolute constant.

Corollary 2.4. Let 0 ≤ ε ≤ 1
1−γ . Suppose we obtain

# samples from generative model ≥ c

1− γ
|S||A| log(c|S||A|/δ)

ε2
.

where we sample uniformly from every state action pair. Then, with probability greater than 1− δ,

‖Q? − Q̂?‖∞ ≤ ε
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2.2.3 Lower Bounds

Let us say that an estimation algorithm A, which is a map from samples to an estimate Q̂?, is (ε, δ)-good on MDP M
if ‖Q? − Q̂?‖∞ ≤ ε holds with probability greater than 1− δ.

Theorem 2.5. There exists ε0, δ0, c and a set of MDPsM such that for ε ∈ (0, ε0) and δ ∈ (0, δ0) if algorithm A is
(ε, δ)-good on all M ∈M, then A must use a number of samples that is lower bounded as follows

# samples from generative model ≥ c

1− γ
|S||A| log(c|S||A|/δ)

ε2
,

2.2.4 What about the Value of the Policy π̂??

Ultimately, we are interested in the value V π̂
?

when we execute π̂?, not just an estimate Q̂? of Q?. The following is
an immediate corollary by Lemma 1.6.

Corollary 2.6. For δ ≥ 0 and with probability greater than 1− δ,

V π̂
?

≥ V ? − γ

√
c

(1− γ)3

log(c|S||A|/δ)
N

− cγ

(1− γ)3

log(c|S||A|/δ)
N

,

where c is an absolute constant.

This bound is not sharp. With a more careful argument, the (1− γ)3 can be reduced to only 1− γ.

2.3 Analysis

Lemma 2.7. (Component-wise Bounds) We have that:

Q? − Q̂? ≤ γ(I − γP̂π
?

)−1(P − P̂ )V ?

Q? − Q̂? ≥ γ(I − γP̂ π̂
?

)−1(P − P̂ )V ?

Proof: Due to the optimality of π? in M ,

Q? − Q̂? = Qπ
?

− Q̂π̂
?

≤ Qπ
?

− Q̂π
?

= (1− γ)
(

(I − γPπ
?

)−1r − (I − γP̂π
?

)−1r
)

= (I − γP̂π
?

)−1((I − γP̂π
?

)− (I − γPπ
?

))Q?

= γ(I − γP̂π
?

)−1(Pπ
?

− P̂π
?

)Q?

= γ(I − γP̂π
?

)−1(P − P̂ )V ? ,

which proves the first claim. The second claim is left as an exercise to the reader.

Denote the variance of any real valued f under a distribution D as:

VarD(f) := Ex∼D[f(x)2]− (Ex∼D[f(x)])2
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Slightly abusing the notation, for V ∈ R|S|, we define the vector VarP (V ) ∈ R|S||A| as:

VarP (V )(s, a) := VarP (·|s,a)(V )

Equivalently,
VarP (V ) = P (V )2 − (PV )2 .

Lemma 2.8. Let δ ≥ 0. With probability greater than 1− δ,

|(P − P̂ )V ?| ≤
√

2 log(2|S||A|/δ)
N

√
VarP (V ?) +

2 log(2|S||A|/δ)
3N

1 .

Proof: The claims follows from Bernstein’s inequality along with a union bound over all state-action pairs.

The key ideas in the proof are in how we bound ‖(I−γP̂π?)−1
√

VarP (V ?)‖∞ and ‖(I−γP̂ π̂?)−1
√

VarP (V ?)‖∞.

It is helpful to define ΣπM as the variance of the discounted reward, i.e.

ΣπM (s, a) := E

((1− γ)

∞∑
t=0

γtr(st, at)−QπM (s, a)

)2
∣∣∣∣∣∣s0 = s, a0 = a


where the expectation is induced under the trajectories induced by π in M . It is straightforward to verify that
‖ΣπM‖∞ ≤ γ2.

The following lemma shows that ΣπM satisfies a Bellman consistency condition.

Lemma 2.9. (Bellman consistency of Σ) For any MDP M ,

ΣπM = γ2VarP (V πM ) + γ2PπΣπM (2.1)

where P is the transition model in MDP M .

The proof is left as an exercise to the reader.

Lemma 2.10. For any policy π and MDP M ,

‖(I − γPπ)−1
√

VarP (V πM )‖∞ ≤
√

2

1− γ

where P is the transition model in M .

Proof: Note that (1− γ)(I − γPπ)−1 is matrix whose rows are a probability distribution. For a positive vector v and
a distribution ν (where ν is vector of the same dimension of v), Jensen’s inequality implies that ν ·

√
v ≤
√
ν · v. This

implies:

‖(I − γPπ)−1
√
v‖∞ =

1

1− γ
‖(1− γ)(I − γPπ)−1

√
v‖∞

≤

√∥∥∥∥ 1

1− γ
(I − γPπ)−1v

∥∥∥∥
∞

≤

√∥∥∥∥ 2

1− γ
(I − γ2Pπ)−1v

∥∥∥∥
∞
.
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where we have used that (I − γPπ)−1v ≤ 2(I − γ2Pπ)−1v for v ≥ 0 (which we will prove shortly). The proof is
completed as follows: by Equation 2.1, ΣπM = γ2(I − γ2Pπ)−1VarP (V πM ), so taking v = VarP (V πM ) ≥ 0 and using
that ‖ΣπM‖∞ ≤ γ2 completes the proof.

Finally, to see for v ≥ 0 that (I − γPπ)−1v ≤ 2(I − γ2Pπ)−1v, observe:

2(I − γ2Pπ)−1v − (I − γPπ)−1v ≥ (1 + γ)(I − γ2Pπ)−1v − (I − γPπ)−1v

= (I − γ2Pπ)−1
(
(1 + γ)(I − γPπ)− (I − γ2Pπ)

)
(I − γPπ)−1v

= (I − γ2Pπ)−1 (I − γPπ) (I − γPπ)−1v

= (I − γ2Pπ)−1v ≥ 0

using that v ≥ 0 and (I − γ2Pπ)−1 has positive entries. This proves the claim.

Lemma 2.11. Let δ ≥ 0. With probability greater than 1− δ, we have:

VarP (V ?) ≤ 2VarP̂ (V̂ π
?

) + ∆′δ,N1

VarP (V ?) ≤ 2VarP̂ (V̂ ?) + ∆′δ,N1

where

∆′δ,N :=

√
18 log(6|S||A|/δ)

N
+

1

(1− γ)2

4 log(6|S||A|/δ)
N

.

Proof: By definition,

VarP (V ?) = VarP (V ?)− VarP̂ (V ?) + VarP̂ (V ?)

= P (V ?)2 − (PV ?)2 − P̂ (V ?)2 + (P̂ V ?)2 + VarP̂ (V ?)

= (P − P̂ )(V ?)2 −
(

(PV ?)2 − (P̂ V ?)2
)

+ VarP̂ (V ?)

Now we bound each of these terms with Hoeffding’s inequality and the union bound. For the first term, with probability
greater than 1− δ,

‖(P − P̂ )(V ?)2‖∞ ≤
√

2 log(2|S||A|/δ)
N

.

For the second term, again with probability greater than 1− δ,

‖(PV ?)2 − (P̂ V ?)2‖∞ ≤ ‖PV ? + P̂ V ?‖∞‖PV ? − P̂ V ?‖∞ ≤ 2‖(P − P̂ )V ?‖∞ ≤ 2

√
2 log(2|S||A|/δ)

N
.

where we have used that (·)2 is a component-wise operation in the second step. For the last term:

VarP̂ (V ?) = VarP̂ (V ? − V̂ π
?

+ V̂ π
?

)

≤ 2VarP̂ (V ? − V̂ π
?

) + 2VarP̂ (V̂ π
?

)

≤ 2‖V ? − V̂ π
?

‖2∞ + 2VarP̂ (V̂ π
?

)

= 2∆2
δ,N + 2VarP̂ (V̂ π

?

) .

To obtain a cumulative probability of error less than δ, we replace δ in the above claims with δ/3. Combining these
bounds completes the proof of the first claim. The above argument also shows VarP̂ (V ?) ≤ 2∆2

δ,N + 2VarP̂ (V̂ ?)
which proves the second claim.

Using Lemma 2.8 and 2.11, we have the following corollary.
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Corollary 2.12. Let δ ≥ 0. With probability greater than 1− δ, we have:

|(P − P̂ )V ?| ≤ c

√
VarP̂ (V̂ π?) log(c|S||A|/δ)

N
+ ∆′′δ,N1

|(P − P̂ )V ?| ≤ c

√
VarP̂ (V̂ ?) log(c|S||A|/δ)

N
+ ∆′′δ,N1 ,

where

∆′′δ,N := c

(
log(c|S||A|/δ)

N

)3/4

+
c

1− γ
log(c|S||A|/δ)

N
,

and where c is an absolute constant.

2.3.1 Completing the proof

Proof:(of Theorem 2.3) The proof consists of bounding the terms in Lemma 2.7. We have:

γ‖(I − γP̂π
?

)−1(P − P̂ )V ?‖∞

≤ cγ

√
log(c|S||A|/δ)

N
‖(I − γP̂π

?

)−1
√

VarP̂ (V̂ π?)‖∞ +
cγ

1− γ

(
log(c|S||A|/δ)

N

)3/4

+
cγ

(1− γ)2

log(c|S||A|/δ)
N

≤ γ

√
2

1− γ

√
log(c|S||A|/δ)

N
+

cγ

1− γ

(
log(c|S||A|/δ)

N

)3/4

+
cγ

(1− γ)2

log(c|S||A|/δ)
N

≤ 3γ

√
1

1− γ
c

√
log(c|S||A|/δ)

N
+ 2

c

(1− γ)2

log(c|S||A|/δ)
N

,

where the first step uses Corollary 2.12; the second uses Lemma 2.10; and the last step uses that 2ab ≤ a2 + b2

(and choosing a, b appropriately). The proof of the lower bound is analogous. Taking a different absolute constant
completes the proof.

2.4 Bibliographic Remarks

The results in this section are originally due to the work in [Azar et al., 2013].



24 Chapter 2:



Chapter 3

Strategic Exploration in RL

25



26 Chapter 3:

Reinforcement Learning: Theory and Algorithms Working Draft

Strategic Exploration in Reinforcement Learning
Alekh Agarwal, Nan Jiang, Sham M. Kakade Chapter 3

In this lecture we will see how an agent acting in an MDP can learn a near-optimal behavior policy over time. Com-
pared with the setting of the previous lecture on a generative model, we no longer have easy access to transitions at
each state, but only have the ability to execute trajectories in the MDP. The main complexity this adds to the learning
process is that the agent has to engage in exploration, that is, plan to reach new states where enough samples have not
been seen yet, so that optimal behavior in those states can be learned.

The content of this chapter will be based on Brafman and Tennenholtz [2003]. In particular, we will present a version
of the R-MAX algorithm, but adapted to the discounted case which we will denote as R-MAX-γ. The pseudocode of
the algorithm is given in Algorithm 1. It relies on the idea of optimism in the face of uncertainty, which is common
to several exploration algorithms in reinforcement learning. In a nutshell, we presume that every unknown alternative
will lead to a high reward, unless we learn otherwise.

Algorithm 1 R-MAX-γ algorithm for sample efficient reinforcement learning in discounted MDPs
Input: Parameter m to set known states. Accuracy parameter ε > 0.

1: Initialize the set of known states K = ∅, counters n(s, a) = n(s, a, s′) = 0 for all s, a, s′ ∈ S × A × S and
R(s, a) = 0.

2: Observe initial state s0 and let π0 be an arbitrary initial policy.
3: for all rounds t = 0, 1, 2, . . . do
4: if a state has become known, i.e. n(s, a) ≥ m for all a ∈ A then
5: update K = K ∪ {s}.
6: Let M̂ have P̂ (s′|s, a) = n(s, a, s′)/n(s, a) and r̂(s, a) = R(s, a)/n(s, a).
7: Let M̂K be the induced MDP (see Definition 3.1) and πt = π?(M̂K) be the optimal policy in M̂K .
8: else
9: If t ≥ 1, πt = πt−1.

10: end if
11: If st ∈ K, choose at = πt(st), else at = arg mina∈A n(s, a).
12: Receive reward rt and observe next state st+1.
13: if st /∈ K then
14: Update n(st, at)+ = 1, R(st, at)+ = rt and n(st, at, st+1)+ = 1.
15: end if
16: end for

Concretely, the algorithm maintains an estimate of the transition probabilities P (s′|s, a) for all the neighbors s′ of a
state s, given an action a. It also estimates the reward r(s, a). Once the algorithm has visited s adequately often to
ensure that these estimates are all accurate, it declares the state as known. Learning is complete when all the states are
known. During a run of the algorithm, whenever it is in a known state, it already knows the optimal action to take and
follows this action. However, when the algorithm is in an unknown state, it explores by picking the action chosen least
often in the state so far.

While we will mostly focus on the statistical properties of the algorithm, the computational aspects are relatively
straightforward. Within an episode, the main computational burden is in the computation of an optimal policy for the
induced MDP MK in line 7. This can be done, for example, using the value iteration algorithm from Chapter 1.2,
as the MDP and reward function are fully known in this step. Since reasoning over the infinite horizon can be tricky
computationally, a common trick is to restrict the step 7 in Algorithm 1 to computing a non-stationary H-step optimal
policy instead, where H = O

(
log 1

ε

1−γ

)
is the effective horizon. That is, we find the policy which maximizes the
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expected discounted reward over just H time steps. Such a policy can be easily computed via dynamic programming,
but is required to be non-stationary. That is, it might choose different actions for the same state visited at different
values of t. Our choice of H ensures that the infinite-horizon value functions and H-step value functions are at most
ε apart, so that none of the subsequent theory is affected.

In order to more concretely discuss the algorithm, we need some important definitions. Given an MDP M and a set K
of known states, we next define the notion of an Induced MDP.

Definition 3.1 (Induced MDP). Let M be an MDP parametrized by (S,A, P, r, γ) with K ∈ S being a subset of
states. Based on this set, we define the induced MDP MK parametrized by (S,A, PMK

, rMK
, γ) in the following

manner. For each s ∈ K, we define

PMK
(s′|s, a) = PM (s′|s, a) and rMK

(s, a) = rM (s, a).

For all the s /∈ K, we define

PMK
(s′|s, a) = 1(s′ = s) and rMK

(z|s, a) = 1(z = 1).

Thus, an induced MDP given a set K of known states is an optimistic process where we receive a reward of 1 (recall
that the rewards rt ∈ [0, 1] so that 1 is the largest attainable reward) no matter which action we try in an unknown state.
Furthermore, once we enter such an unknown state, we stay there and keep collecting this reward for the remainder of
the episode. On the known states, naturally the transition and reward distributions follow their known behavior.

We will now analyze the R-MAX-γ algorithm, and provide a bound on the number of episodes before which it finds
an ε-optimal policy. For the analysis, it will be useful to invoke the notation

H =
log(2/ε(1− γ))

1− γ
.

We will prove the following theorem.

Theorem 3.2. Let st be the state visited by the R-MAX-γ algorithm at round t and let the parameter m for deciding
known states be set as m = O

(
SH2

ε2 log S2A
δ

)
. For any 0 ≤ ε, δ < 1, with probability at least 1 − δ, V πtM (st) ≥

V ?M (st)− ε, for all but O
(
H3S2A
ε3 log S2A

δ

)
rounds in the MDP.

In words, the algorithm finds policies such that those policies induce near optimal value functions for all but a
bounded number of rounds. Note that this does not imply that the algorithm behaves sub-optimally for the first
O
(
H3S2A
ε3 log S2A

δ

)
rounds only. The dynamics of the MDP might be such that an unknown state is encountered with

a small chance only, in which case the algorithm learns whenever it encounters these states. The guarantee also does
not preclude settings where after some initial exploration, the algorithm encounters a state with a small value from
which escape is not possible under the dynamics. In such a case, the guarantee of the algorithm trivially holds as any
policy is optimal in that state.

An alternative optimality condition we might desire from the algorithm is that it finds a near-optimal policy, that is a
policy whose expected reward is within ε of the optimal, when taking expectations over the start state as well. This
is not the guarantee provided here, and in general requires some mixing conditions on the MDP which we do not
consider here. A common way to ensure such mixing in practice is by assuming the ability to reset to the initial state
distribution during the training of an agent. When such a reset ability is available, the guarantee provided here can be
further strengthened into approximate optimality of the policy.

In order to prove the result, we will introduce a number of key concepts in understanding exploration in reinforcement
learning. Throughout the analysis, we will abuse our notation r to also refer to the expected reward, given a (state,
action) pair.
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We start with a basic result which was first introduced in Kearns and Singh [2002] under the name of a simulation
lemma.

Lemma 3.3 (Simulation lemma for MDPs). Let M and M ′ be two MDPs with the same state and action spaces. If
the transition and reward functions of these MDPs satisfy∑
s′∈S
|PM (s′|s, a)− PM ′(s′|s, a)| ≤ ε1, ∀s ∈ S and a ∈ A, |rM (s, a)− rM ′(s, a)| ≤ ε2 ∀s ∈ S and a ∈ A.

Then for every stationary policy π, the two MDPs satisfy ‖V πM − V πM ′‖∞ ≤
γ

1−γ ε1 + ε2.

The lemma is called a simulation lemma as it tells how much error we incur in evaluating policies if we build an
approximate simulator M ′ for the true process M .

Proof: The lemma is proved using the conditions on the transition and reward distributions, along with the Bellman
equations for value functions (1.2). For any state s, we have

|V πM (s)− V πM ′(s)| ≤ (1− γ)ε2 + γ

∣∣∣∣∣∑
s′∈S

(PM (s′|s, π(s))V πM (s′)− PM ′(s′|s, π(s))V πM ′(s
′))

∣∣∣∣∣
≤ (1− γ)ε2 + γ

∣∣∣∣∣∑
s′∈S

PM (s′|s, a)(V πM (s′)− V πM ′(s′))

∣∣∣∣∣+ γ

∣∣∣∣∣∑
s′∈S

V πM ′(s
′)(PM (s′|s, a)− PM ′(s′|s, a))

∣∣∣∣∣
≤ (1− γ)ε2 + γ‖V πM − V πM ′‖∞ + γε1.

Note that here we have used the normalization of value functions, that is 0 ≤ V πM (s) ≤ 1. Since the inequality holds
for any state, we can take the max on the LHS and rearrange terms to complete the proof.

The next lemma really formalizes our intuition that the optimal policy in the induced MDP encourages exploration
of the currently unknown states. We will show that either the best policy πi learned using the induced MDP at an
epsisode i is already good, or it has a high chance of taking us to an unknown state. We will use the notation

PπM [escape from K|s0 = s] := 1(s /∈ K) +

∞∑
t=1

γtPπM (st /∈ K, s0, . . . , st−1 ∈ K).

That is, PπM [escape from K|s0 = s] is the discounted probability of reaching an unknown state when executing π in
the original MDP M , starting from the state s.

Lemma 3.4 (Induced inequalities). Let M be an MDP with K being the set of known states. Let MK be the induced
MDP (Definition 3.1) with respect to K and M . For any stationary policy π and state s ∈ S we have

V πMK
(s) ≥ V πM (s) and V πM (s) ≥ V πMK

(s)− PπM [escape from K|s0 = s].

The lemma has two implications. First it formalizes the notion that the induced MDP MK is indeed an optimistic
version of M , since it ascribes higher values to each state under every policy. At the same time, the optimism is not
uncontrolled. The values ascribed by MK to a policy π are higher only if the policy has a substantial probability of
visiting an unknown state, and hence is useful for exploration.

Proof: The first inequality is a direct consequence of the definition of MK . If s /∈ K, it is immediate since we get
the maximum reward of 1 at each time-step, while never leaving this state. If s ∈ K, then our immediate reward is
identical to that inM . At the next step, we either stay inK, or leave. If we leave then we will obtain the largest reward
for the remaining time steps. If we stay, we obtain the same reward as that in M . Thus we never obtain a smaller
reward in MK by definition.
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For the second part, we have

|V πM (s)− V πMK
(s)| ≤ 1(s /∈ K) + 1(s ∈ K)γ

∣∣∣∣∣∑
s′∈S

PM (s′|s, π(s))V πM (s′)− PMK
(s′|s, π(s))V πMK

(s′)

∣∣∣∣∣
= 1(s /∈ K) + 1(s ∈ K)γ

∣∣∣∣∣∑
s′∈S

PM (s′|s, π(s))(V πM (s′)− V πMK
(s′))

∣∣∣∣∣
≤ 1(s /∈ K) + 1(s ∈ K)γPM (s′ /∈ K|s, π(s)) + 1(s ∈ K)γ

∣∣∣∣∣∑
s′∈K

PM (s′|s, π(s))(V πM (s′)− V πMK
(s′))

∣∣∣∣∣ .
Here the first inequality holds since the two value functions can differ by at most the maximum value of 1 if the starting
state is unknown. The following equality holds as the transition models under M and MK are identical when s ∈ K.
Now unrolling the summation in the last inequality further yields the statement of the lemma.

Given the lemma, we have a particularly useful corollary. It says that the policy πi computed in each episode of
Algorithm 1 is near optimal, with the error being the probability of leaving the known state set.

Corollary 3.5 (Implicit Explore-Exploit).

V
π?(MK)
M (s) ≥ V ?M (s)− Pπ

?(MK)
M [escape from K|s0 = s]

Proof: By the lemma, we have

V
π?(MK)
M (s) ≥ V π

?(MK)
MK

(s)− Pπ
?(MK)
M [escape from K|s0 = s]

≥ V π
?(M)

MK
(s)− Pπ

?(MK)
M [escape from K|s0 = s]

≥ V π
?(M)

M (s)− Pπ
?(MK)
M [escape from K|s0 = s].

Here the first inequality follows from Lemma 3.4 applied with π = π?(MK), second inequality uses that π?(MK) is
the optimal policy in MK and hence obtains a higher reward than π?(M) and the third inequality follows from the
optimism of MK shown in Lemma 3.4.

We conclude with a final lemma which relates the probability of escape from K over an infinite trajectory to that of
encountering an unknown state over H steps.

Lemma 3.6. With probability at least 1 − δ, the number of rounds where V πtM (st) ≤ V ?M (st) − ε is at most
O
(
mHSA

ε ln 1
δ

)
.

Proof: In this lemma, we with sufficiently many visits to states with a large escape probability, all the states become
known. Furthermore, with high probability, the number of rounds following such a visit where our policy’s value
function is significantly suboptimal is at most H .

The proof of the lemma has two parts. First we show that if at round t, the probability of escape from K starting from
st is large, then we also have a large probability of escape in the next H steps. Using Bernoulli concentration, we then
further show that the algorithm will indeed encounter an unknown state in the next H steps with a large probability.
For the first part, let s = st be the state encountered at some round t and let π = πt be the current policy. Suppose
further that we know PπM [escape from K | s0 = s] ≥ ε. Let us define

pH = 1(S /∈ K) +

H∑
t=1

PπM (st /∈ K | s0, . . . , st−1 ∈ K).
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Note that there is no discounting in the definition of pH . We have

ε ≤ 1(s /∈ K) +

∞∑
t=1

γtPπM (st /∈ K | s0, . . . , st−1 ∈ K)

≤ pH +

∞∑
t=H+1

γtPπM (st /∈ K | s0, . . . , st−1 ∈ K)

≤ ph +
γH+1

1− γ
.

Thus we see that pH ≥ ε − γH+1/(1 − γ). It suffices to ensure that the tail term is at most ε/2 to guarantee that
pH ≥ ε/2, which means that we want H ≥ log 2

ε(1−γ)/ log 1
γ . Noting that log(1/γ) ≥ 1− γ for γ ∈ (0, 1] completes

a lower bound of ε/2 on pH for the stated value of H .

It remains to bound the number of actions before we have sufficiently many visits to unknown states. For this, let
t1, t2, . . . be the rounds such that |ti) − ti+1| > H and if πi is the policy used at round ti and Ki is the set of known
states at ti, then Pπi(escape from K | s0 = sti) ≥ ε. Let us define a random variable

Xi = 1(∃s{sti , sti+1, . . . , sti+H} : s /∈ Ki).

By the definition of the rounds ti, we know that E[Xi|sti ] ≥ ε. Let us define a σ-field Fi to consist of all the
randomness in the MDP and the agent prior to ti (this includes the randomness in the state transitions at round ti+1−1,
so that the state sti+1

, the policy πi+1 and the known states Ki+1 are known when conditioning on Fi). It is easily
checked that Xi is measurable with respect to Fi, since the entire trajectory till round ti+1 − 1 is known under this
conditioning, which in particular implies that we know the subtrajectory from rounds ti to ti+H and hence can check
the indicator inXi. Also, we observe that E[Xi |Fi−1] = Pπi(escape from Ki in H steps |sti) ≥ ε/2 using the earlier
lower bound on pH . Furthermore, since the Xi are binary valued, it is clear that

E[(Xi − E[Xi | Fi−1])2 | Fi−1] ≤ E[X2
i | Fi−1] ≤ E[Xi | Fi−1].

Now applying the Freedman’s inequality for martingales (Lemma A.3 in the appendix) to the sequence Yi = Xi −
E[Xi | Fi−1], we see that with probability at least 1− δ, for a fixed n we have

n∑
i=1

(E[Xi | Fi−1]−Xi) ≤ 2

√√√√ln
1

δ

n∑
i=1

E[Xi | Fi−1] + ln
1

δ

≤ 1

2

n∑
i=1

E[Xi | Fi−1] + 3 ln
1

δ
.

This implies that
n∑
i=1

Xi ≥
1

2

n∑
i=1

E[Xi | Fi−1]− 3 ln
1

δ
≥ nε

4
− 3 ln

1

δ
.

Since we desire
∑n
i=1Xi ≥ mSA, it suffices to pick n ≥ 4(mSA+ 3 ln(1/δ))/ε.

Note that for the rounds t ∈ [ti+H+1, ti+1 − 1], we already know that the probability of escape is small, meaning that
the value function of our policy is near optimal on those rounds. This concludes the proof.

Proof of Theorem 3.2 .
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We now have most of the ingredients for the theorem. In order to prove the theorem, we need to ensure that m is large
enough that when a state is declared known, then its transition and reward functions are reasonably accurate. For now,
let us assume that m is chosen large enough so that the induced approximate MDP M̂K is a good approximation to
the true induced MDP MK . Based on Lemma 3.3, we will assume that m is large enough so that the value functions
of these two MDPs are at most ε/2 different in any state. Then, applying this closeness twice, we see that

V πtMK
(s) ≥ V πt

M̂K
(s)− ε

2
≥ V π

?

M̂K
(s)− ε

2
≥ V π

?

MK
(s)− ε.

Combining with Lemma 3.4, we see that for any starting state we have

V πtM (s) ≥ V π
?

MK
(s)− ε− PπtM [escape from K|s0 = s]

≥ V π
?

M (s)− ε− PπtM [escape from K|s0 = s],

where the first inequality is combining Lemma 3.4 with with the earlier bound, and the second inequality uses the
optimism of the induced MDP MK .

Thus, either the policy πt is at most 2ε suboptimal, or it visits an unknown state with probability at least ε. Intu-
itively, this means that we visit an unknown state at least every 1/ε steps, if π̂t is not already near optimal. Since the
probabilities are discounted,

The total number of visits to unknown states are bounded by mSA. This is because for each unknown state s, we
need to try every action a at least m times before s becomes known. Since we try the least frequently chosen action
each time, it is ensured that each action is chosen exactly m times before s becomes known. Consequently, we need
O(mSA/ε) episodes in order to ensure that every state is known and the algorithm can certifiably have a near optimal
policy. In other words, with O(mSAH/ε) actions in the MDP, the agent is guaranteed to have marked all the states as
known. This intuition is made precise in Lemma 3.6.

In order to obtain the theorem statement, we set m = O
(
SH2

ε2 log S2A
δ

)
. This number is based on satisfying the

condition of Lemma 3.3 with γε1/(1− γ) = ε/2, along with Lemma 8.5.6 of Kakade [2003]. Plugging this value of
m in our bound on the number of samples as a function of m above completes the proof of the theorem.
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Policy Gradient Methods
Alekh Agarwal, Nan Jiang, Sham M. Kakade Chapter 4

For a distribution ρ over states, define:
V πM (ρ) := Es0∼ρ[V πM (s0)] ,

where we slightly overload notation. Consider a class of parametric policies {πθ|θ ∈ Θ ⊂ Rd}. The optimization
problem of interest is:

max
θ∈Θ

V πθM (ρ) .

We drop the MDP subscript in this chapter.

In many settings, one of the most practically effective methods is gradient ascent. A “direct” approach often more
easily handles large state and action spaces, and, in some cases, more readily handles settings where the model is
not known. While we are interested in good performance under ρ, we will see how it is helpful to optimize under a
different measure µ. Specifically, we consider optimizing V πθ (µ) even though our ultimate goal is performance under
V πθ (ρ).

One immediate issue is that if the policy class {πθ} consists of deterministic policies then πθ will, in general, not be
differentiable. This motivates us to consider policy classes that are stochastic, which permit differentiability.

Example 4.1 (Softmax policies). It is instructive to explicitly consider a “tabular” policy representation, given by the
softmax policy:

πθ(a|s) =
exp(θs,a)∑
a′ exp(θs,a′)

, (4.1)

where the parameter space is Θ = R|S||A|. Note that (the closure of) the set of softmax policies contains all stationary
and deterministic policies.

Example 4.2 (Linear softmax policies). For any state, action pair s, a, suppose we have a feature mapping φs,a ∈ Rd.
Let us consider the policy class

πθ(a|s) =
exp(θ · φs,a)∑

a′∈A exp(θ · φs,a′)

with θ ∈ Rd.

Example 4.3 (Neural softmax policies). Here we may be interested in working with the policy class

πθ(a|s) =
exp

(
fθ(s, a)

)∑
a′∈A exp

(
fθ(s, a′)

)
where the scalar function fθ(s, a) may be parameterized by a neural network, with θ ∈ Rd.

Advantages and the state-action visitation distribution

Let us first introduce the concept of an advantage.

Definition 4.4. The advantage Aπ(s, a) of a policy π is defined as

Aπ(s, a) := Qπ(s, a)− V π(s) .
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Note that:
A∗(s, a) := Aπ

∗
(s, a) ≤ 0

for all state-action pairs.

We now define the discounted state visitation distribution. Let τ denote a trajectory, whose unconditional distribution
Prπµ(τ) under π with starting distribution µ, is

Prπµ(τ) = µ(s0)π(a0|s0)P (s1|s0, a0)π(a1|s1) · · · . (4.2)

Our notation can be simplified through defining the discounted state visitation distribution dπs0 as:

dπs0(s) = (1− γ)

∞∑
t=0

γtPrπ(st = s|s0)

where Prπ(st = s|s0) is the state-action visitation probability, where π is used starting at state s0. We also write:

dπµ(s) = Es0∼µ
[
dπs0(s)

]
.

By construction, observe that for any function f : S ×A → R,

Eτ∼Prπ

[ ∞∑
t=0

γtf(st, at)

]
=

1

1− γ
Es∼dπθEa∼πθ(·|s)

[
f(s, a)

]
.

The following lemma is a fundamental tool in the convergence analysis of directly policy search methods..

Lemma 4.5. (The performance difference lemma) For all policies π, π′ and distributions µ,

V π(µ)− V π
′
(µ) = Eτ∼Prπµ

[ ∞∑
t=0

γtAπ
′
(st, at)

]

=
1

1− γ
Es′∼dπµEa′∼π(·|s′)

[
Aπ
′
(s′, a′)

]
Proof: Fix a state s and let Prπ be the distribution over trajectories with s0 = s. Using a telescoping argument, we
have:

V π(s)− V π
′
(s) = (1− γ)Eτ∼Prπ

[ ∞∑
t=0

γtr(st, at)

]
− V π

′
(s)

= Eτ∼Prπ

[ ∞∑
t=0

γt
(

(1− γ)r(st, at) + V π
′
(st)− V π

′
(st)

)]
− V π

′
(s)

= Eτ∼Prπ

[ ∞∑
t=0

γt
(

(1− γ)r(st, at) + γV π
′
(st+1)− V π

′
(st)

)]
(a)
= Eτ∼Prπ

[ ∞∑
t=0

γt
(

(1− γ)r(st, at) + γE[V π
′
(st+1)|st, at]− V π

′
(st)

)]

= Eτ∼Prπ

[ ∞∑
t=0

γtAπ
′
(st, at)

]

where (a) uses the tower property of conditional expectations. The proof is completed by linearity of expectation.
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4.1 The Policy Gradient Method

It is convenient to define the discounted total reward of a trajectory as:

R(τ) := (1− γ)

∞∑
t=0

γtr(st, at)

where st, at are the state-action pairs in τ . Observe that:

V πθ (µ) = Eτ∼Pr
πθ
µ

[R(τ)] .

Theorem 4.6. (Policy gradients) The following are expressions for∇θV πθ (µ):

• REINFORCE:

∇V πθ (µ) = Eτ∼Pr
πθ
µ

[
R(τ)

∞∑
t=0

∇ log πθ(at|st)

]

• Action value expression:

∇V πθ (µ) = Eτ∼Pr
πθ
µ

[ ∞∑
t=0

γtQπθ (st, at)∇ log πθ(at|st)

]

=
1

1− γ
Es∼dπθEa∼πθ(·|s)

[
Qπθ (s, a)∇ log πθ(a|s)

]

• Advantage expression:

∇V πθ (µ) =
1

1− γ
Es∼dπθEa∼πθ(·|s)

[
Aπθ (s, a)∇ log πθ(a|s)

]
The alternative expressions are more helpful to use when we turn to Monte Carlo estimation.

Proof: We have:

∇V πθ (µ) = ∇
∑
τ

R(τ)Prπθµ (τ)

=
∑
τ

R(τ)∇Prπθµ (τ)

= ∇
∑
τ

R(τ)Prπθµ (τ)∇ log Prπθµ (τ)

=
∑
τ

R(τ)Prπθµ (τ)∇ log (µ(s0)πθ(a0|s0)P (s1|s0, a0)πθ(a1|s1) · · · )

=
∑
τ

R(τ)Prπθµ (τ)

( ∞∑
t=0

∇ log πθ(at|st)

)

which completes the proof of the first claim.
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For the second claim, for any state s0

∇V πθ (s0)

= ∇
∑
a0

πθ(a0|s0)Qπθ (s0, a0)

=
∑
a0

(
∇πθ(a0|s0)

)
Qπθ (s0, a0) +

∑
a0

πθ(a0|s0)∇Qπθ (s0, a0)

=
∑
a0

πθ(a0|s0)
(
∇ log πθ(a0|s0)

)
Qπθ (s0, a0)

+
∑
a0

πθ(a0|s0)∇
(

(1− γ)r(s0, a0) + γ
∑
s1

P (s1|s0, a0)V πθ (s1)
)

=
∑
a0

πθ(a0|s0)
(
∇ log πθ(a0|s0)

)
Qπθ (s0, a0) + γ

∑
a0,s1

πθ(a0|s0)P (s1|s0, a0)∇V πθ (s1)

= Eτ∼Pr
πθ
s0

[Qπθ (s0, a0)∇ log πθ(a0|s0)] + γEτ∼Pr
πθ
s0

[∇V πθ (s1)] .

By linearity of expectation,

∇V πθ (µ)

= Eτ∼Pr
πθ
µ

[Qπθ (s0, a0)∇ log πθ(a0|s0)] + γEτ∼Pr
πθ
µ

[∇V πθ (s1)]

= Eτ∼Pr
πθ
µ

[Qπθ (s0, a0)∇ log πθ(a0|s0)] + γEτ∼Pr
πθ
µ

[Qπθ (s1, a1)∇ log πθ(a1|s1)] + . . . .

where the last step follows from recursion. This completes the proof of the second claim.

The proof of the final claim is left as an exercise to the reader.

4.1.1 Optimization

Gradient ascent and convergence to stationary points

Let us say a function f : Rd → R is β -smooth if

‖∇f(w)−∇f(w′)‖ ≤ β‖w − w′‖ , (4.3)

where the norm ‖ · ‖ is the Euclidean norm. In other words, the derivatives of f do not change too quickly.

Gradient ascent, with a fixed stepsize η, follows the update rule:

θt+1 = θt + η∇V πθt (µ) .

It is convenient to use the shorthand notation:

π(t) := πθt , V (t) := V πθt

The next lemma is standard in non-convex optimization.

Lemma 4.7. (Convergence to Stationary Points) Assume that for all θ ∈ Θ, V πθ is β-smooth and bounded below by
V∗. Suppose we use the constant stepsize η = 1/β. For all T , we have that

min
t≤T
‖∇V (t)(µ)‖2 ≤ 2β(V ∗(µ)− V (0)(µ))

T
.
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Monte Carlo estimation and stochastic gradient ascent

One difficulty is that even if we know the MDP M , computing the gradient may be computationally intensive. It turns
out that we can obtain unbiased estimates of π with only simulation based access to our model, i.e. assuming we can
obtain sampled trajectories τ ∼ Prπθµ .

With respect to a trajectory τ , define:

Q̂πθ (st, at) := (1− γ)

∞∑
t′=t

γt
′−tr(st′ , at′)

∇̂V πθ (µ) :=

∞∑
t=0

γtQ̂πθ (st, at)∇ log πθ(at|st)

We now show this provides an unbiased estimated of the gradient:

Lemma 4.8. (Unbiased gradient estimate) We have :

Eτ∼Pr
πθ
µ

[
∇̂V πθ (µ)

]
= ∇V πθ (µ)

Proof: Observe:

E[∇̂V πθ (µ)] = E

[ ∞∑
t=0

γtQ̂πθ (st, at)∇ log πθ(at|st)

]
(a)
= E

[ ∞∑
t=0

γtE[Q̂πθ (st, at)|st, at]∇ log πθ(at|st)

]
(b)
= E

[ ∞∑
t=0

γtQπθ (st, at)∇ log πθ(at|st)

]

where (a) follows from the tower property of the conditional expectations and (b) follows from that the Markov
property implies E[Q̂πθ (st, at)|st, at] = Qπθ (st, at).

Hence, the following procedure is a stochastic gradient ascent algorithm:

1. initialize θ0.

2. For t = 0, 1, . . .

(a) Sample τ ∼ Prπθµ .

(b) Update:
θt+1 = θt + ηt∇̂V πθ (µ)

where ηt is the stepsize and ̂∇V πθ (µ) estimated with τ .

Note here that we are ignoring that τ is an infinte length sequence. It can be truncated appropriately so as to control
the bias.

The following is standard result with regards to non-convex optimization. Again, with reasonably bounded variance,
we will obtain a point θt with small gradient norm.
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Lemma 4.9. (Stochastic Convergence to Stationary Points) Assume that for all θ ∈ Θ, V πθ is β-smooth and bounded
below by V∗. Suppose the variance is bounded as follows:

E[‖∇̂V πθ (µ)−∇V πθ (µ)‖2] ≤ σ2

For t ≤ β(V ∗(µ) − V (0)(µ))/σ2, suppose we use a constant stepsize of ηt = 1/β, and thereafter, we use ηt =√
2/(βT ). For all T , we have:

min
t≤T

E[‖∇V (t)(µ)‖2] ≤ 2β(V ∗(µ)− V (0)(µ))

T
+

√
2σ2

T
.

Baselines and stochastic gradient ascent

A significant practical issue is that the variance σ2 is often large in practice. Here, a form of variance reduction is
often critical in practice. A common method is as follows.

Let f : S → R.

1. Construct f as an estimate of V πθ (µ). This can be done using any previous data.

2. Sample a new trajectory τ , and define:

Q̂πθ (st, at) := (1− γ)

∞∑
t′=t

γt
′−tr(st′ , at′)

∇̂V πθ (µ) :=

∞∑
t=0

γt
(
Q̂πθ (st, at)− f(st)

)
∇ log πθ(at|st)

We often refer to f(s) as a baseline at state s.

Lemma 4.10. (Unbiased gradient estimate with Variance Reduction) For any procedure used to construct to the
baseline function f : S → R, if the samples used to construct f are independent of the trajectory τ , where Q̂πθ (st, at)
is constructed using τ , then:

E

[ ∞∑
t=0

γt
(
Q̂πθ (st, at)− f(st)

)
∇ log πθ(at|st)

]
= ∇V πθ (µ)

where the expectation is with respect to both the random trajectory τ and the random function f(·).

Proof: For any function g(s),

E [∇ log π(a|s)g(s)] =
∑
a

∇π(a|s)g(s) = g(s)
∑
a

∇π(a|s) = g(s)∇
∑
a

π(a|s) = g(s)∇1 = 0

Using that f(·) is independent of τ , we have that for all t

E

[ ∞∑
t=0

γtf(st)∇ log πθ(at|st)

]
= 0

The result now follow froms Lemma 4.8.
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4.2 The Softmax Policy and Relative Entropy Regularization

Let us now return to the softmax policy, from Equation 4.1.

Observe that:
∂ log πθ(a|s)
∂θs′,a′

= 1
[
s = s′

](
1
[
a = a′

]
− πθ(a′|s)

)
where 1|E ] is the indicator of E being true.

Lemma 4.11. For the softmax policy class, we have:

∂V πθ (µ)

∂θs,a
=

1

1− γ
dπθ (s)πθ(a|s)Aπθ (s, a)

Proof: We have:

∂V πθ (µ)

∂θs,a
= Eτ∼Pr

πθ
µ

[ ∞∑
t=0

γt1[st = s]
(
1[at = a]Aπθ (s, a)− πθ(a|s)Aπθ (st, at)

)]

= Eτ∼Pr
πθ
µ

[ ∞∑
t=0

γt1[(st, at) = (s, a)]Aπθ (s, a)

]
+ πθ(a|s)

∞∑
t=0

γtEτ∼Pr
πθ
µ

[
1[st = s]Aπθ (st, at)

]
=

1

1− γ
E(s′,a′)∼dπθ [1[(s′, a′) = (s, a)]Aπθ (s, a)] + 0

=
1

1− γ
dπθ (s, a)Aπθ (s, a) ,

where the second step uses that π(a|s) is a constant (a and s are not random variables) and the penultimate step uses
that for any policy

∑
a π(a|s)Aπ(s, a) = 0.

Global Convergence

Even for the case of the softmax policy class, our optimization problem is non-convex:

Lemma 4.12. For the softmax policy class, there exists an MDP M such that V πθ (µ) is not a convex function in θ.

We leave the proof as an exercise to the reader.

A further difficulty when dealing with the softmax parameterization is that for any sequence of policies πθt that
becomes deterministic, then ‖∇V πθt ‖ → 0; roughly speaking, any deterministic policy is a stationary point. We
now see that, while our optimization problem is not convex, global convergence to the optimal solution is possible;
furthermore, provided we add appropriate regularization, we can obtain a polynomial convergence rate. The difficulty
is that the gradient, with respect to θs,a, may be small when πθ(a|s) is small, even if the advantageAπθ (s, a) is positive
and large.

In order to prevent probabilities from becoming arbitrarily small, we consider an relative entropy regularization
penalty. Recall that the relative-entropy for distributions p and q is defined as:

KL(p, q) := Ex∼p
[
− log

q(x)

p(x)

]
.

Denote the uniform distribution over a set X by UnifX , and define the following relative-entropy regularized objective
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as:

Lλ(θ) := V πθ (µ)− λEs∼UnifS

[
KL(UnifA, πθ(·|s))

]
= V πθ (µ) +

λ

|S| |A|
∑
s,a

log πθ(a|s) + λ log |A| , (4.4)

where λ is a regularization parameter. The constant (i.e. the last term) is not relevant with regards to optimization.
Note that this regularizer is different from using the entropy function as a regularizer.

The following theorem shows that approximate first-order stationary points of the entropy-regularized objective are
approximately globally optimal, provided the regularization is sufficiently small.

Theorem 4.13. (Relative entropy regularization) Suppose θ is such that:

‖∇θLλ(θ)‖2 ≤ εopt

and εopt ≤ λ/(2|S| |A|). Then we have that for all starting state distributions ρ:

V πθ (ρ) ≥ V ?(ρ)− 2λ

∥∥∥∥∥dπ
?

ρ

dπθµ

∥∥∥∥∥
∞

≥ V ?(ρ)− 2λ

1− γ

∥∥∥∥∥dπ
?

ρ

µ

∥∥∥∥∥
∞

.

We refer to
∥∥∥∥dπ?ρµ ∥∥∥∥

∞
as the distribution mismatch coefficient. The above theorem shows the importance of having an

appropriate measure µ(s) in order for the approximate first-order stationary points to be near optimal.

Proof: The proof consists of showing that maxaA
πθ (s, a) ≤ 2(1− γ)λ/(dπθµ (s)|S|) for all states. To see that this is

sufficient, observe that by the performance difference lemma (Lemma 4.5),

V ?(ρ)− V πθ (ρ) =
1

1− γ
∑
s,a

dπ
?

ρ (s)π?(a|s)Aπθ (s, a)

≤ 1

1− γ
∑
s

dπ
?

ρ (s) max
a∈A

Aπθ (s, a)

≤ 2λ
∑
s

dπ
?

ρ (s)/(dπθµ (s)|S|)

≤ 2λmax
s

(
dπ

?

ρ (s)

dπθµ (s)

)
.

which would then complete the proof of the first claim. The second claim in the proof follows from that dπθµ (s) ≥
(1− γ)µ(s).

We now proceed to show that maxaA
πθ (s, a) ≤ 2(1 − γ)λ/(dπθµ (s)|S|). For this, it suffices to bound Aπθ (s, a)

for any state-action pair s, a where Aπθ (s, a) ≥ 0 else the claim is trivially true. Consider an (s, a) pair such that
Aπθ (s, a) ≥ 0. Using the policy gradient expression for the softmax parameterization (see Lemma 4.11),

∂Lλ(θ)

∂θs,a
=

1

1− γ
dπθµ (s)πθ(a|s)Aπθ (s, a) +

λ

|S|

(
1

|A|
− πθ(a|s)

)
. (4.5)
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The gradient norm assumption ‖∇θLλ(θ)‖2 ≤ εopt implies that:

εopt ≥
∂Lλ(θ)

∂θs,a
=

1

1− γ
dπθµ (s)πθ(a|s)Aπθ (s, a) +

λ

|S|

(
1

|A|
− πθ(a|s)

)
≥ λ

|S|

(
1

|A|
− πθ(a|s)

)
,

where we have used where Aπθ (s, a) ≥ 0. Rearranging and using our assumption εopt ≤ λ/(2|S| |A|),

πθ(a|s) ≥
1

|A|
−
εopt|S|
λ
≥ 1

2|A|
.

Solving for Aπθ (s, a) in (4.5), we have:

Aπθ (s, a) =
1− γ
dπθµ (s)

(
1

πθ(a|s)
∂Lλ(θ)

∂θs,a
+

λ

|S|

(
1− 1

πθ(a|s)|A|

))
≤ 1− γ

dπθµ (s)

(
2|A|εopt +

λ

|S|

)
≤ 2

1− γ
dπθµ (s)

λ

|S|
,

where the final step uses εopt ≤ λ/(2|S| |A|). This completes the proof.

The policy gradient ascent updates for Lλ(θ) are given by:

θ(t+1) = θ(t) + η∇θLλ(θ(t)). (4.6)

By combining the above theorem with standard results on the convergence of gradient ascent, we obtain the following
corollary.

Corollary 4.14. (Global convergence with the softmax policy class) Let βλ := 8γ
(1−γ)2 + 2λ

|S| . Starting from any initial

θ(0), consider the updates (4.6) with λ = ε(1−γ)

2

∥∥∥∥ dπ?ρµ ∥∥∥∥
∞

and η = 1/βλ. Then for all starting state distributions ρ, we have

min
t<T

{
V ?(ρ)− V (t)(ρ)

}
≤ ε whenever T ≥ 320|S|2|A|2

(1− γ)4 ε2

∥∥∥∥∥dπ
?

ρ

µ

∥∥∥∥∥
2

∞

.

Proof:[of Corollary 4.14] Let βλ be the smoothness of Lλ(θ). A valid upper bound on βλ is:

βλ ≤
8γ

(1− γ)2
+

2λ

|S|
,

where we leave the proof as an exercise to the reader.

Using Theorem 4.13, the desired optimality gap ε will follow if we set λ = ε(1−γ)

2

∥∥∥∥ dπ?ρµ ∥∥∥∥
∞

and if ‖∇θLλ(θ)‖2 ≤

λ/(2|S| |A|). In order to complete the proof, we need to bound the iteration complexity of making the gradient
sufficiently small.

By Lemma 4.7, after T iterations of gradient ascent with stepsize of 1/βλ, we have

min
t≤T

∥∥∥∇θV (t)(µ)
∥∥∥2

2
≤ 2βλ(V ?(µ)− V (0)(µ))

T
≤ 2βλ

T
,
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where βλ is an upper bound on the smoothness of Lλ(θ). We seek to ensure

εopt ≤
√

2βλ
T
≤ λ

2|S| |A|

Choosing T ≥ 8βλ |S|2|A|2
λ2 satisfies the above inequality. Using our bound for βλ,

8βλ |S|2|A|2

λ2
≤ 64 |S|2|A|2

(1− γ)2 λ2
+

16 |S||A|2

λ
≤ 80 |S|2|A|2

(1− γ)2 λ2
=

320 |S|2|A|2

(1− γ)4 ε2

∥∥∥∥∥dπ
?

ρ

µ

∥∥∥∥∥
2

∞

where we have used that λ < 1. This completes the proof.

4.3 The Natural Policy Gradient

Observe that a policy constitutes a family of probability distributions {πθ(·|s)|s ∈ S}. We now consider a pre-
conditioned gradient descent method based on this family of distributions. Recall that the Fisher information matrix
of a parameterized density pθ(x) is defined as Ex∼pθ

[
(∇ log pθ(x))∇ log pθ(x)>

]
. Now we let us define Fθµ as an

(average) Fisher information matrix on the family of distributions {πθ(·|s)|s ∈ S} as follows:

Fθµ := Es∼dπθµ Ea∼πθ(·|s)
[
(∇ log πθ(a|s))∇ log πθ(a|s)>

]
.

Note that the average is under the state-action visitation frequencies.

The natural policy gradient method is defined as:

θ ← θ + η(Fθµ)†∇V πθ (µ) (4.7)

where M† denotes the Moore-Penrose pseudoinverse of the matrix M .

4.3.1 Global Convergence and the Softmax Policy Class

In this subsection, we restrict the optimization measure to be identical to the performance measure, i.e. µ = ρ; there
reason for this will become clear in our main theorem, where we see the NPG is effective when the algorithm is
directly applied to the performance measure ρ. Furthermore, we restrict attention to states s ∈ S reachable from ρ,
since, without loss of generality, we can exclude states that are not reachable under this start state distribution1.

The functional form.

With the softmax parameterization, the NPG updates take a strikingly simple form.

Lemma 4.15. (NPG for the softmax parameterization) For the softmax policy class, we have that:[
(Fθµ)†∇V πθ (µ)

]
s,a

=
1

1− γ
Aπθ (s, a)− c(s)

where c is a function only of the state. This implies that the NPG updates (4.7) take the form:

π(t+1)(a|s) = π(t)(a|s)exp(ηA(t)(s, a)/(1− γ))

Zt(s)
,

where Zt(s) =
∑
a∈A π

(t)(a|s) exp(ηA(t)(s, a)/(1− γ)).

1Specifically, we restrict the MDP to the set of states {s ∈ S : ∃π such that dπρ (s) > 0}.
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Proof: By definition of the Moore-Penrose pseudoinverse, we have that (Fθµ)†∇V πθ (µ) = w? if an only if w? is the
minimum norm solution of:

min
w
‖Fθµw −∇V πθ (µ)‖2 .

For the softmax policy parameterization, we have by Lemma 4.11,

w>∇θ log πθ(a|s) = ws,a −
∑
a′∈A

ws,a′πθ(a
′|s) = ws,a − cs

where cs is not a function of a. This implies that:

Fθµw = Es∼dπθµ Ea∼πθ(·|s)

[
∇ log πθ(a|s)

(
w>∇θ log πθ(a|s)

)]
= Es∼dπθµ Ea∼πθ(·|s)

[
∇ log πθ(a|s)

(
ws,a − cs

)]
Again using the functional form of derivative of the softmax policy parameterization,[

Fθµw
]
s′,a′

= dπθ (s′)πθ(a
′|s′)

(
ws′,a′ − cs′

)
which implies:

‖Fθµw −∇V πθ (µ)‖2 =
∑
s,a

(
dπθ (s)πθ(a|s)

(
ws,a −Aπθ (s, a)−

∑
a′∈A

ws,a′πθ(a
′|s)
))2

.

By taking the minimum norm solution, the proof of the first claim is completed. The proof of the second claim follows
by the definition of the NPG update rule.

A dimension free convergence rate.

We now provide a dimension free convergence rate of this algorithm.

Theorem 4.16 (Global convergence for Natural Policy Gradient Ascent). For the softmax policy class, suppose we
run the NPG updates (4.7) using µ ∈ ∆(S) and with θ(0) = 0. Fix η > 0. For all T > 0, we have:

V (T )(µ) ≥ V ∗(µ)− log |A|
ηT

− 1

(1− γ)2T
.

Note in the above the theorem that the NPG algorithm is directly applied to the performance measure V π(µ), and
the guarantees are also with respect to µ. In particular, there is no distribution mismatch coefficient in the rate of
convergence.

In particular, setting η ≥ (1− γ)2 log |A|, we see that NPG finds an ε-optimal policy in a number of iterations that is
at most:

T ≤ 2

(1− γ)2ε
,

which has no dependence on the number of states or actions, despite the non-concavity of the underlying optimization
problem.

The proof strategy we take borrows ideas from the classical multiplicative weights algorithm.

First, the following improvement lemma is helpful:
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Lemma 4.17 (Improvement lower bound for NPG). For the iterates π(t) generated by the NPG updates (4.7), we have
for all starting state distributions µ

V (t+1)(µ)− V (t)(µ) ≥ (1− γ)

η
Es∼µ logZt(s) ≥ 0.

Proof: First, let us show that logZt(s) ≥ 0. To see this, observe:

logZt(s) = log
∑
a

π(t)(a|s) exp(ηA(t)(s, a)/(1− γ))

≥
∑
a

π(t)(a|s) log exp(ηA(t)(s, a)/(1− γ)) =
η

1− γ
∑
a

π(t)(a|s)A(t)(s, a) = 0.

where the inequality follows by Jensen’s inequality on the concave function log x. The performance difference lemma
implies:

V (t+1)(µ)− V (t)(µ) =
1

1− γ
E
s∼d(t+1)

µ

∑
a

π(t+1)(a|s)A(t)(s, a)

=
1

η
E
s∼d(t+1)

µ

∑
a

π(t+1)(a|s) log
π(t+1)(a|s)Zt(s)

π(t)(a|s)

=
1

η
E
s∼d(t+1)

µ
KL(π(t+1)

s ||π(t)
s ) +

1

η
E
s∼d(t+1)

µ
logZt(s)

≥ 1

η
E
s∼d(t+1)

µ
logZt(s) ≥

1− γ
η

Es∼µ logZt(s).

where the last step uses that d(t+1)
µ ≥ (1− γ)µ, componentwise, and that logZt(s) ≥ 0.

With this lemma, we now prove Theorem 4.16.

Proof:[of Theorem 4.16] Since ρ is fixed, we use d? as shorthand for dπ
?

ρ ; we also use πs as shorthand for the vector
of π(·|s). By the performance difference lemma (Lemma 4.5),

V π
?

(ρ)− V (t)(ρ) =
1

1− γ
Es∼d?

∑
a

π?(a|s)A(t)(s, a)

=
1

η
Es∼d?

∑
a

π?(a|s) log
π(t+1)(a|s)Zt(s)

π(t)(a|s)

=
1

η
Es∼d?

(
KL(π?s ||π(t)

s )−KL(π?s ||π(t+1)
s ) +

∑
a

π∗(a|s) logZt(s)

)

=
1

η
Es∼d?

(
KL(π?s ||π(t)

s )−KL(π?s ||π(t+1)
s ) + logZt(s)

)
,

where we have used the closed form of our updates from Lemma 4.15 in the second step.

By applying Lemma 4.17 with d? as the starting state distribution, we have:

1

η
Es∼d? logZt(s) ≤

1

1− γ

(
V (t+1)(d?)− V (t)(d?)

)
which gives us a bound on Es∼d? logZt(s).
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Using the above equation and that V (t+1)(ρ) ≥ V (t)(ρ) (as V (t+1)(s) ≥ V (t)(s) for all states s by Lemma 4.17), we
have:

V π
?

(ρ)− V (T−1)(ρ) ≤ 1

T

T−1∑
t=0

(V π
?

(ρ)− V (t)(ρ))

≤ 1

ηT

T−1∑
t=0

Es∼d?(KL(π?s ||π(t)
s )−KL(π?s ||π(t+1)

s )) +
1

ηT

T−1∑
t=0

Es∼d? logZt(s)

≤ Es∼d?KL(π?s ||π(0))

ηT
+

1

(1− γ)T

T−1∑
t=0

(
V (t+1)(d?)− V (t)(d?)

)
=

Es∼d?KL(π?s ||π(0))

ηT
+
V (T )(d?)− V (0)(d?)

(1− γ)T

≤ log |A|
ηT

+
1

(1− γ)2T
.

The proof is completed using that V (T )(ρ) ≥ V (T−1)(ρ).

4.3.2 Function Approximation and a Connection to Transfer Learning

This section studies policy classes parameterized by some parameter θ ∈ Rd. In contrast with the tabular results in
the previous sections, the policies classes that we are often interested in are not fully expressive, e.g. d � |S||A|
(indeed |S| or |A| need not even be finite for the results in this section); in this sense, we are in the regime of function
approximation.

We now consider the (unconstrained) policy optimization problem:

max
θ∈Rd

V πθ (ρ)

for some state distribution ρ. As before, while we are interested in V πθ (ρ), we shall see that optimization with respect
to a different distribution µ is also important in the approximate case.

Compatible function approximation

To analyze NPG for restricted policy classes, we leverage a close connection of the NPG update rule (4.7) to the
notion of compatible function approximation. It is helpful to consider a distribution ν over state-action pairs, i.e.
ν ∈ ∆(S) × ∆(A). For a weight vector w ∈ Rd and with respect to ν and θ, define the compatible function
approximation error Lν and the minimal compatible function approximation error L?ν as:

Lν(w; θ) := Es,a∼ν
[(
Aπθ (s, a)− w · ∇θ log πθ(a|s)

)2]
, L?ν(θ) := min

w
Lν(w; θ). (4.8)

The NPG update rule can be viewed as the minimizer of a certain function approximation problem: precisely, if we
take ν(s, a) = dπθµ (s)πθ(a|s), then

Fµ(θ)†∇θV θ(µ) ∈ argminw Lν(w; θ). (4.9)

This is a straightforward consequence of the first order optimality conditions. Consequently, when the minimizer is
unique, then the NPG update direction is precisely identified by minimizing the regression problem implied by the
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compatible function approximation error. When the solution is not unique, we allow the use of any minimizer of
Lν(w; θ) and prove that this does not affect the convergence properties of the algorithm, beyond the norm of the
solution we find.

This observation also opens a direct pathway to approximate updates where we can solve the regression problems with
samples. Furthermore, if the minimal compatible function approximation error is 0, then Thm 4.16 already establishes
that global convergence occurs for the NPG update rule. The more often encountered scenario is when the minimal
compatible function error is nonzero, as is likely to happen when the parameterization using θ does not represent all
possible policies.

Example 4.18 (Gradients and compatible function approximation). Consider the state-action visitation distribution
under π starting from µ, i.e.

ν(s, a) = dπθµ (s)πθ(a|s)

and the minimizer
w?(θ) ∈ argminw Lν(w; θ).

Let us denote the best linear predictor of Aπθ (s, a) using ∇θ log πθ(a|s) by Âπθ (s, a), i.e.

Âπθ (s, a) := w?(θ) · ∇θ log πθ(a|s).

The first order optimality conditions for Âπθ (s, a) being the best linear predictor directly imply that:

∇θV πθ (µ) =
1

1− γ
Es∼dπθµ Ea∼πθ(·|s)

[
∇θ log πθ(a|s)Aπθ (s, a)

]
=

1

1− γ
Es∼dπθµ Ea∼πθ(·|s)

[
∇θ log πθ(a|s)Âπθ (s, a)

]
.

The proof is left as an exercise to the reader. In other words, computing the gradient with the best linear approximation,
Âπθ (s, a), instead of Aπθ (s, a) results in identical outcomes.

Example 4.19 (Linear policies and approximation). To gain further intuition about the compatible function approxi-
mation error, we can specialize it to the linear setting of Example 4.2. Here,

∇θ log πθ(a|s) = φ̃s,a , where φ̃s,a := φs,a − Ea′∼πθ(·|s)[φs,a′ ]

is the centered version of φs,a. Thus, we get

Lν(w; θ) = Es,a∼ν
[(
Aπθ (s, a)− w · φ̃s,a

)2]
.

That is, the compatible function approximation error measures the expressivity of our parameterization in how well
linear functions of the parameterization can capture the policy’s advantage function. More generally, the error provides
a particularly useful characterization of the policy class expressivity for NPG updates as characterized in the main
result of this section (Theorem 4.22).

Example 4.20 (Neural policies and approximation). Let us now specialize to the more general case of neural policies,
as in Example 4.3. Here,

∇θ log πθ(a|s) = gθ(s, a) , where gθ(s, a) := ∇fθ(s, a)− Ea′∼πθ(·|s)
[
∇fθ(s, a′)

]
.

Thus, we get

Lν(w; θ) = Es,a∼ν
[(
Aπθ (s, a)− w · gθ(s, a)

)2]
.
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A Helper Lemma

We now assume that the policy class is smooth in the sense that log πθ is a smooth function of θ.

Assumption 4.21. (Policy Smoothness) Assume for all s ∈ S, a ∈ A that log πθ(a|s) is a β-smooth function of θ
(recall (4.3)).

This smoothness assumption is a strict generalization of our previous analysis for the softmax parameterization in the
tabular setting. For the case of linear policies, as in Example 4.2, log πθ(a|s) is a β-smooth function, provided we
have the uniform bound ‖φs,a‖22 ≤ β. For neural policies, as in Example 4.3, the smoothness of log πθ will depend on
both the Lipschitz and smoothness constants of fθ(s, a).

The main technical result of this section quantifies the effect of error in the compatible function approximation. The
theorem is stated in an abstract manner, so that it can be subsequently utilized in concrete settings to deal with op-
timization and statistical error. The theorem relates the compatible function approximation errors on an arbitrary
sequence {w(t), θ(t)} to the sub-optimality of the resulting policy.

Let us more abstractly consider an update rule of the form

θ(t+1) = θ(t) + ηw(t) . (4.10)

where w(t) is either the exact NPG update rule or a (sample based) approximation to it.

Theorem 4.22. (NPG approximation) Fix a comparison policy π and a state distribution ρ. Define ν as the induced
state-action measure under π, i.e.

ν(s, a) = dπρ (s)π(a|s).

Suppose that the update rule (4.10) starts with θ(0) = 0 and uses the (arbitrary) sequence of weights w(0), . . . , w(T );
that Assumption 4.21 holds; and that for all t < T ,

Lν(w(t); θ(t)) ≤ εapprox, ‖w(t)‖2 ≤W.

We have that:

min
t<T

{
V π(ρ)− V (t)(ρ)

}
≤ 1

1− γ

(√
εapprox +

log |A|
ηT

+
ηβW 2

2

)
.

Proof: First, by smoothness (see Equation (4.3)),

log
π(t+1)(a|s)
π(t)(a|s)

≥ ∇θ log π(t)(a|s) ·
(
θ(t+1) − θ(t)

)
− β

2
‖θ(t+1) − θ(t)‖22

= η∇θ log π(t)(a|s) · w(t) − η2 β

2
‖w(t)‖22.

We use d as shorthand for dπρ (note ρ and π are fixed); we also use πs as shorthand for the vector π(·|s). By the
performance difference lemma (Lemma 4.5),
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Es∼d
(

KL(πs||π(t)
s )−KL(πs||π(t+1)

s )
)

= Es∼d Ea∼π(·|s)

[
log

π(t+1)(a|s)
π(t)(a|s)

]
≥ ηEs∼d Ea∼π(·|s)

[
∇θ log π(t)(a|s) · w(t)

]
− η2 β

2
‖w(t)‖22 (using previous display)

= ηEs∼d Ea∼π(·|s)

[
A(t)(s, a)

]
− η2 β

2
‖w(t)‖22

+ ηEs∼d Ea∼π(·|s)

[
∇θ log π(t)(a|s) · w(t) −A(t)(s, a)

]
≥ (1− γ)η

(
V π(ρ)− V (t)(ρ)

)
− η2 β

2
‖w(t)‖22

− η
√

Es∼d Ea∼π(·|s)

[(
∇θ log π(t)(a|s) · w(t) −A(t)(s, a)

)2]
(Lemma 4.5 and Jensen)

≥ (1− γ)η

(
V π(ρ)− V (t)(ρ)

)
− η2 β

2
W 2 − η√εapprox.

where we have used our assumption on εapprox.

Rearranging, we have:

V π(ρ)− V (t)(ρ)

≤ 1

1− γ

(
1

η
Es∼d

(
KL(πs||π(t)

s )−KL(πs||π(t+1)
s )

)
+
ηβ

2
W 2 +

√
εapprox

)
Proceeding,

1

T

T−1∑
t=0

(V π(ρ)− V (t)(ρ)) ≤ 1

ηT (1− γ)

T−1∑
t=0

Es∼d (KL(πs||π(t)
s )−KL(πs||π(t+1)

s ))

+
1

T (1− γ)

T−1∑
t=0

(
ηβW 2

2
+
√
εapprox

)
≤ Es∼d KL(πs||π(0))

ηT (1− γ)
+

ηβW 2

2(1− γ)
+

√
εapprox

1− γ

≤ log |A|
ηT (1− γ)

+
ηβW 2

2(1− γ)
+

√
εapprox

1− γ

which completes the proof.

Convergence, Approximation, and Transfer Learning

In order to leverage Theorem 4.22 for obtaining concrete convergence rates, we now consider the setting where we
have access to exact natural policy gradients, or equivalently (due to Equation 4.9), we use the exact minimizer of
Lν(t)(w; θ(t)) at each iteration t.

The difficulty with applying Theorem 4.22 is that, ideally, we seek to ensure that Lν (w; θ(t)) is small, where ν is
the unknown state-action measure of a comparator policy π. Like previous results, we use an exploratory initial
distribution over states and actions to partially address this issue as described below.
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Formally, we consider a (slightly) more general version of the natural policy gradient algorithm, and we provide an
agnostic learning result for this algorithm (where we compare to the best policy in the policy class). Instead of using
a starting state distribution µ over states, the generalized version uses a starting distribution ν0 over state-action pairs.
Analogous to dπµ, this starting state-action distribution induces a state-action visitation distribution νπν0 , defined as:

νπν0(s, a) := (1− γ)Es0,a0∼ν0
∞∑
t=0

γtPrπ(st = s, at = a|s0, a0) (4.11)

where Prπ(st = s, at = a|s0, a0) is the state-action visitation probability that st = s and at = a, after starting at state
s0, taking action a0, and following π thereafter. As per our convention, ν(t) is shorthand for νπ

(t)

ν0 .

We now consider the update rule:
w(t) ∈ argminw Lν(t)(w; θ(t)). (4.12)

which exactly computes a minimizer (of a least squares objective function); the following subsection provides a finite
sample version. This form is a more general version than that of (4.9); the generality is helpful in the following
corollary, which provides a (worst-case) upper bound in terms of ν0.

Corollary 4.23. (Agnostic Learning with NPG) Suppose that we follow the update rule in (4.12) starting with θ(0) = 0.
Fix a state distribution ρ and a state-action distribution ν0; let π? = πθ? the best policy in Π for ρ, i.e. θ? ∈
argmaxθ∈Θ V

πθ (ρ). Define ν? as the induced state-action measure under π?, i.e.

ν?(s, a) = dπ
?

ρ (s)π?(a|s).

Suppose η =
√

2 log |A|/(βW 2T ); Assumption 4.21 holds; and that for all t < T ,

Lν?(w(t); θ(t)) ≤ εtransfer, L?ν(t)(θ
(t)) ≤ εapprox, ‖w(t)‖2 ≤W.

We have that:

min
t<T

{
V π

?

(ρ)− V (t)(ρ)
}
≤

(
W
√

2β log |A|
(1− γ)

)
· 1√

T
+

√
1

(1− γ)2
εtransfer

≤

(
W
√

2β log |A|
(1− γ)

)
· 1√

T
+

√
1

(1− γ)3

∥∥∥ν?
ν0

∥∥∥
∞
εapprox .

The connection to transfer learning is due to that Lν?(·; θ(t)), the error under ν?, is what ultimately governes our
approximation error, yet our algorithm minimizes the error under Lν(t)(·; θ(t)). This is due to that ν? is not known.

Proof: The first claim follows from Theorem 4.22 along with our choice of η and the definition of εtransfer. For the
second claim,

Lν?(w(t); θ(t)) ≤
∥∥∥ ν?
ν(t)

∥∥∥
∞
· Lν(t)(w(t); θ(t)) ≤

∥∥∥ ν?
ν(t)

∥∥∥
∞
· εapprox ≤

1

(1− γ)

∥∥∥ν?
ν0

∥∥∥
∞
· εapprox.

where we have used ν(t)(s, a) ≥ (1− γ)ν0(s, a).

When εapprox = 0, as in the tabular setting, the term depending on distribution mismatch coefficient disappears,
consistent with Theorem 4.16. However, the convergence rate is only O(

√
1/T ) instead of the O(1/T ) bound there.

This is because obtaining the fast rate in the function approximation regime appears to require even stronger conditions
on the distributions (including ν(t+1)) under which the approximation errors are controlled at each round t.
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4.4 Related algorithms

TODO

4.4.1 Trust Region Policy Optimization (TRPO)

TODO: explain how TRPO and NPG are closely related.

4.4.2 Proximal Policy Optimization (PPO)

4.4.3 Conservative Policy Iteration (CPI)

TODO: give CPI guarantee, which is similar to NPG guarantee

4.5 Bibliographic Remarks

The convergence rates in this chapter are largely derived from [Agarwal et al., 2019]. The proof strategy has origins
in the online regret framework in changing MDPs [Even-Dar et al., 2009].

The performance difference lemma was widely realized as an important analysis tool due to [Kakade and Langford,
2002, Kakade, 2003]; its origins have been implicit in a number of earlier works.

For standard optimization results in non-convex optimization (e.g. Lemma 4.7 and 4.9), we refer the reader to [Beck,
2017] (also, see [Ghadimi and Lan, 2013]).

The REINFOCE algorithm is due to [Williams, 1992]. The natural policy gradient method was originally presented
in [Kakade, 2001]; arguments for this method have been provided based on information geometry [Kakade, 2001,
Bagnell and Schneider, 2003].

The notion of compatible function approximation was due to [Sutton et al., 1999], which also proved the claim in Ex-
ample 4.18. The close connection of the NPG update rule to compatible function approximation was noted in [Kakade,
2001].
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Value Function Approximation
Alekh Agarwal, Nan Jiang, Sham M. Kakade Chapter 5

The previous lecture showed how policy iteration like methods can be generalized to large state spaces (think discrete,
but exponentially large in the desired accuracy parameters) and for policy classes that are not necessarily tabular. This
chapter will consider a similar question, but for the class of value iteration like methods. We will attack the question
in two parts. First we will study how the value function of a given policy can be evaluated in large state spaces,
before moving to the question of policy improvement. The result and proofs in this chapter have been obtained in
collaboration with Nan Jiang.

5.1 Approximate Policy Evaluation

First we need some notational preliminaries. Throughout this lecture, we will consider the problem of approximating
Q-value functions. We will assume that we are given a class of candidate value functions F , where each f ∈ F is a
mapping from S × A to [0, 1] so that it satisfies the desired semantics of a Q-value function. Given a policy π, one
question of interest is to find a function f ∈ F which approximatesQπ . In order to define the notion of approximation,
we introduce additional notation. Note that in our previous lectures, we typically considered approximating value
functions uniformly, that is under an `∞ norm over states and actions. While this is feasible in the tabular case,
once the number of states grows large, we can no longer hope to find such a function f which will approximate Qπ

uniformly for all states and actions from a reasonable amount of data, and with a function class F of reasonable
statistical complexity (these concepts will be made precise in the sequel). In order to sidestep this issue, taking a cue
from supervised learning, we will instead switch to measuring our errors in expectation over some state distribution.

Concretely, given a function g : S ×A → [0, 1], and a distribution µ over S ×A, we define:

‖g‖µ :=
√
E(s,a)∼µg2(x). (5.1)

For instance, if g(s, a) = f(s, a) − Qπ(s, a), then ‖g‖µ measures the expected squared loss of f in approximating
Qπ under the distribution µ over S and A. For evaluating the quality of f in approximating Qπ , a natural measure to
consider is

dπ(s)π(a | s) = dπd0(s)π(a | s) = Es0∼d0 [(1− γ)

∞∑
t=0

γtPπ(st = s|s0)]π(a | s),

where the notation dπd0(s) is consistent with our definition from the previous lecture. As before, we will drop the
subscript d0 as it will be fixed throughout our treatment. We will further overload the ‖g‖µ notation, and also allow
the use of unnormalized and signed measures µ, interpreting them as integrals with respect to an appropriate base
measure. We quickly visit a few useful properties of this generalization, the proofs of which are left to the reader.

Fact 5.1. The definition (5.1) of ‖g‖µ, once extended to signed and unnormalized measures implies that:

1. ‖g‖cµ =
√
c ‖g‖µ.

2. ‖g‖µ1−µ2
≤ ‖g‖µ1

, whenever ‖g‖2µ1−µ2
≥ 0.

We further define the Bellman operator T π . For a function g : S ×A → [0, 1], we have
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T π[g](s, a) := (1− γ)r(s, a) + γEs′∼P (·|s,a)g(s′, π(s′)). (5.2)

We now define a simple procedure for estimating the function Qπ . Suppose we are given a set of N samples (s, a, s′)
drawn according to dπ(s)ν(a | s) × P (s′|s, a). Here ν(a|s) is an arbitrary distribution used for generating actions.
While π might be a natural choice of ν as mentioned earlier, we allow more general choices as the question of policy
improvement which we consider next will require ourQ-value estimates to be precise not just for the actions chosen by
π, as we will see in the sequel. A reasonable mental model for generating such samples is to generate N trajectories,
where we take a random number of steps according to π, starting from the initial state drawn according to d0, and then
take one more action as per ν. It is easily seen that this sampling model induces the desired probability distribution
over the (s, a, s′) triples. We will use the shorthand dπ,ν to denote the joint distribution over (s, a) pairs which draws
s ∼ dπd0 and a ∼ ν(· | s).

Let (si, ai, s
′
i) refer to the ith triple for i = 1, 2, . . . , N . Let st,i denote the state encountered at time t in trajectory i

and similarly for the actions. Let us define:

L(f ; f ′) = E(s,a)∼dπ,ν ,s′∼P (·|s,a)[(f(s, a)− (1− γ)r(s, a)− γf ′(s′, π(s′)))2].

L̂N (f ; f ′) =
1

N

N∑
i=1

(f(si, ai)− (1− γ)r(si, ai)− γf ′(s′i, π(s′i)))
2.

T̂ πF f ′ = argminf∈F L̂N (f ; f ′).

Intuitively, T̂ πF (f ′) maps a function f ′ to an f which minimizes the Bellman error on π’s trajectories, when the future
values are predicted under f ′. For the population loss L(f ; f ′), we expect it to be minimized when f = f ′ = Qπ due
to the Bellman equations for value functions.

The procedure we consider for obtaining an estimate ofQπ from samples is the following sample-based value iteration.
Initialize f0 ∈ F arbitrarily and iterate:

fk = T̂ πF fk−1 for k > 0. (5.3)

For this procedure, we will establish the following convergence guarantee.

Theorem 5.2. For the procedure defined in Equation 5.3, for all k = 0, 1, 2, . . ., with probability at least 1− δ,

‖fk −Qπ‖dπ,ν ≤
√
‖ρ‖∞ ‖1/ρ‖∞γ

k/2 ‖f0 −Qπ‖dπ,ν+
2
√
‖ρ‖∞ ‖1/ρ‖∞

1− γ

(
√

3 max
f∈F
‖T πF f − T πf‖dπ,ν +

√
19

N
log
|F|
δ

)
.

While the second part of the error bound which depends on N goes to zero as we increase the number of samples,
the term maxf∈F ‖T πFf − T πf‖dπ does not asymptotically vanish in general. It is easily seen to be 0 in the tabular
function class, but can be arbitrarily large for other classes. This quantity has been referred to as the inherent one-step
Bellman error in Antos et al. [2008] and is well-known to control the quality of function approximation guarantees.

We will analyze the properties of this procedure in two parts. First we will obtain an error bound on the quality of fk
in approximating Qπ , assuming all the sample-based estimates are close to their expectations. We will then quantify
the size of the statistical deviations.

The error measure we will use to study the convergence of fk to Qπ is ‖fk −Q‖dπ . We start with a simple lemma.
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Lemma 5.3 (Error decomposition). For any sequence fk : S ×A → [0, 1], we have the bound

‖fk −Qπ‖dπν ≤ γ
k/2
√
‖ρ‖∞ ‖1/ρ‖∞ ‖f0 −Qπ‖dπ,ν +

k∑
i=1

γ(k−i)/2
√
‖ρ‖∞ ‖1/ρ‖∞ ‖fi − T

πfi−1‖dπ,ν

Proof: We will prove the lemma in two steps. First we establish a bound on ‖fk −Qπ‖dπ,π in terms of ‖fi − T πfi−1‖dπ,π .
We then apply importance weighting to correct for the measure mismatch on both sides of the inequality to obtain the
final bound.

For any scaled probability measure µ, dµ is always a norm so that it satisfies triangle inequality. This implies

‖fk −Qπ‖dπ,π ≤ ‖fk − T
πfk−1‖dπ,π + ‖T πfk−1 −Qπ‖dπ,π

= ‖fk − T πfk−1‖dπ,π + ‖T πfk−1 − T πQπ‖dπ,π (Bellman equation for Qπ)
= ‖fk − T πfk−1‖dπ,π + γ ‖Pπfk−1 − PπQπ‖dπ,π
≤ ‖fk − T πfk−1‖dπ,π + γ ‖fk−1 −Qπ‖dπ,πPπ ,

where the final equality treats dπ,π as a row vector with cardinality |S|·|A|. This equality follows from the definition of
T π and since the reward function is assumed to be known. The last inequality is a consequence of Jensen’s inequality
which gives that E[X]2 ≤ E[X2]. Note that by the first part of Fact 5.1, we further obtain

‖fk −Qπ‖dπ,π ≤ ‖fk − T
πfk−1‖dπ,π +

√
γ ‖fk−1 −Qπ‖γdπ,πPπ .

In order to simplify further, we define µ0(s, a) = d0(s)π(a | s) to be the initial measure extended to (s, a) pairs and
observe that dπ,π can be written as

dπ,π = (1− γ)µ0(I − γPπ)−1 so that γPπdπ,π = dπ,π − (1− γ)µ0,

where the inequalities hold elementwise. Substituting this in our earlier bound, we further obtain

‖fk −Qπ‖dπ,π ≤ ‖fk − T
πfk−1‖dπ,π +

√
γ ‖fk−1 −Qπ‖dπ,π−(1−γ)µ0

≤ ‖fk − T πfk−1‖dπ,π +
√
γ ‖fk−1 −Qπ‖dπ,π (Part 2 of Fact 5.1)

≤ γk/2 ‖f0 −Qπ‖dπ,π +

k∑
i=1

γ(k−i)/2 ‖fi − T πfi−1‖dπ,π ,

where we obtain the final inequality by iterating the same set of steps to bound ‖fi −Qπ‖dπ for each i = 1, 2, . . . , k.

In order to complete the proof, let us recall the notation ρ(s, a) = ν(s, a)/π(s, a). Note that for any two functions
f1, f2 ∈ {S ×A → [0, 1]}, ‖f1‖dπ,π ≤ ‖f2‖dπ,π implies that

‖f1‖dπ,ν ≤ ‖f1‖‖ρ‖∞dπ,π ≤ ‖f2‖‖ρ‖∞dπ,π ≤ ‖f1‖‖ρ‖∞‖1/ρ‖∞dπ,ν .

Combining this with our earlier bound completes the proof of the lemma.

The bound above suggests that if we had good control over the errors ‖fi − T πfi−1‖ at each iteration, then we get
successively good approximations to Qπ . Our next lemma takes a step in this direction by relating the loss function L
whose empirical counterpart is minimized in our iteration (5.3) and the Bellman errors which show up in the previous
bound.
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Lemma 5.4. For any f ′ ∈ F , we have

‖f − T πf ′‖2dπ,ν = L(f ; f ′)− L(T πf ′; f ′).

Proof: The proof essentially follows using standard properties of least squares regression. Note that

L(f ; f ′) = E(s,a)∼dπ,ν ,s′∼P (·|s,a)[(f(s, a)− (1− γ)r(s, a)− γf ′(s′, π(s′)))2]

= E(s,a)∼dπ,ν ,s′∼P (·|s,a)[(f(s, a)− T πf ′(s, a) + T πf ′(s, a)− (1− γ)r(s, a)− γf ′(s′, π(s′)))2]

= ‖f − T πf ′‖2dπ + L(T πf ′; f ′)
+ 2E(s,a)∼dπ,ν ,s′∼P (·|s,a)(f(s, a)− T πf ′(s, a))(T πf ′(s, a)− (1− γ)r(s, a)− γf ′(s′, π(s′)))

= ‖f − T πf ′‖2dπ,ν + L(T πf ′; f ′) + 2E [(f(s, a)− T πf ′(s, a))E[T πf ′(s, a)− (1− γ)r(s, a)− γf ′(s′, π(s′)) | s, a]]

= ‖f − T πf ′‖2dπ,ν + L(T πf ′; f ′). (since E[(1− γ)r(s, a)− γf ′(s′, π(s′)) | s, a] = T πf ′(s, a))

This lemma has a particularly useful corollary for approximate minimizers of the loss. For stating the result, let us
define the notation T πF f ′ = argminf∈F L(f ; f ′) and the corresponding empirical counterparts as well. Then we have
the following result.

Corollary 5.5. If f is an ε suboptimal minimizer ofL overF , that is,L(f ; f ′) ≤ L(T πF f ′; f)+ε, then ‖f − T πf ′‖2dπ,ν ≤
‖T πF f ′ − T πf ′‖

2
dπ,ν + ε.

Proof: The ε-optimality of f implies that

‖f − T πf ′‖2dπ,ν = L(f ; f ′)− L(T πf ′; f ′)
≤ L(T πF f ′; f ′) + ε− L(T πf ′; f ′)

= ‖T πF f ′ − T πf ′‖
2
dπ,ν + ε,

where the first inequality uses the approximate optimality of f and T πF f ′ ∈ F while the second uses Lemma 5.4 with
f = T πF f ′.

The corollary has a rather intuitive interpretation. If f approximately minimizes L, then it is also close to T πf ′ up to
an amount which depends on the suboptimality as well as the distance of T πf ′ to F . The second term can be thought
of as an approximation error, and is always zero, for example, when the function class is fully tabular.

Since fk minimizes the empirical loss L̂(f ; fk−1), we expect it to approximately minimize the population version
L(f ; fk−1) by invoking concentration arguments. If we can use this intuition to quantify ε, then we can plug the result
of Corollary 5.5 into that of Lemma 5.3 to quantify the convergence of fi to Qπ . We give a lemma that gives a bound
on ε next. We give the simplest version of this argument assuming that the N samples we use to construct L̂ are drawn
i.i.d., but similar arguments continue to hold if the samples are drawn according to a suitably regular Markov chain,
as is the case when they are consecutive triples from a trajectory. For the ease of presentation, we will also restrict F
to a large, but finite class so that we can control statistical deviations uniformly over all functions in F using a union
bound.

Lemma 5.6. For the sequence fk, k = 0, 1, . . . ,∞ as defined in Equation 5.3, with probability at least 1− δ, we have

L(fk; fk−1)− L(T πF fk−1; fk−1) ≤ 2 ‖T πF fk−1 − T πfk−1‖2dπ,ν +
19

N
log
|F|
δ
.
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Proof: For i = 1, 2, . . . , N , and given two functions f, f ′, let us define

Xi = (f(si, ai)− (1− γ)r(si, ai)− γf ′(s′i, π(s′i)))
2 − (TFf ′(si, ai)− (1− γ)r(si, ai)− γf ′(s′i, π(s′i)))

2.

It is easily checked that

L̂(f ; f ′)− L̂(TFf ′; f ′) =
1

N

N∑
i=1

Xi.

Furthermore, the random variables Xi are i.i.d. by assumption, bounded by 1 in absolute value and the variance is
bounded by

E[X2
i ] = E[(f(si, ai)− T πF f ′(si, ai))2(f(si, ai) + T πF f ′(si, ai)− 2(1− γ)r(si, ai)− 2γf ′(s′i, π(s′i)))

2]

≤ 4E[(f(si, ai)− T πF f ′(si, ai))2] = 4 ‖f − T πF f ′‖
2
dπ,ν

≤ 8(‖f − T πf ′‖2dπ,ν + ‖T πF f ′ − T πf ′‖
2
dπ,ν ) (Cauchy-Schwarz inequality)

= 8(L(f ; f ′)− L(T πf ′; f ′) + ‖T πF f ′ − T πf ′‖
2
dπ,ν ) (Lemma 5.4)

= 8(L(f ; f ′)− L(T πF f ′; f ′) + 2 ‖T πF f ′ − T πf ′‖
2
dπ,ν ). (Lemma 5.4 with f = T πF f ′)

Since E[Xi] = L(f ; f ′) − L(T πF f ′; f ′) ≥ 0, invoking Bernstein’s inequality yields that with probability 1 − δ,
simultaneously for all pairs f, f ′ ∈ F

L(f ; f ′)− L(T πF f ′; f ′)− L̂(f ; f ′) + L̂(T πF f ′; f ′)

≤
√

16

N
(L(f ; f ′)− L(T πF f ′; f ′) + 2 ‖T πF f ′ − T πf ′‖

2
dπ,ν ) log

|F|2
δ

+
2

3N
log
|F|2

δ

≤ 1

2
(L(f ; f ′)− L(T πF f ′; f ′) + 2 ‖T πF f ′ − T πf ′‖

2
dπ,ν ) +

8

N
log
|F|
δ

+
4

3N
log
|F|
δ
,

where the second inequality uses
√
ab ≤ (a+ b)/2 from Cauchy-Schwarz inequality. Rearranging terms, we see that

with probability at least 1− δ

L(f ; f ′)− L(T πF f ′; f ′) ≤ 2(L̂(f ; f ′)− L̂(T πF f ′; f ′)) + 2 ‖T πF f ′ − T f ′‖
2
dπ,ν +

19

N
log
|F|
δ
.

Choosing f ′ = fk−1 and f = fk so that fk minimizes L̂(f ; fk−1) in the inequality above, we see that with probability
at least 1− δ,

L(fk; fk−1)− L(T πF fk−1; fk−1) ≤ 2 ‖T πF fk−1 − T πfk−1‖2dπ,ν +
19

N
log
|F|
δ
.

In order to obtain a uniform bound across all iterations, we note that the bound here holds for all pairs f, f ′ so that
across all the iterations, the failure probability is at most δ.

Having obtained a bound on the statistical errors, we are now ready to prove the theorem.

Proof:[Proof of Theorem 5.2] The proof largely combines the results of our lemmas so far. We condition on the high
probability event in Lemma 5.6 since it hods with probability at least 1− δ throughout the run of the algorithm. Under
this event, combining Lemma 5.6 along with Corollary 5.5 yields that

‖fk − T πfk−1‖2dπ,ν ≤ 3 ‖T πF fk−1 − T πfk−1‖2dπ,ν +
19

N
log
|F|
δ

Using
√
a+ b ≤

√
a+
√
b, we see that for all i = 1, 2, . . . , k

‖fi − T πfi−1‖dπ,ν ≤
√

3 max
f∈F
‖T πF f − T πf‖dπ,ν +

√
19

N
log
|F|
δ

:= φ.
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Plugging this result into the conclusion of Lemma 5.3, we obtain

‖fk −Qπ‖dπ,ν ≤
√
‖ρ‖∞ ‖1/ρ‖∞γ

k/2 ‖f0 −Qπ‖dπ,ν +
√
‖ρ‖∞ ‖1/ρ‖∞

k∑
i=1

γ(k−i)/2φ

≤
√
‖ρ‖∞ ‖1/ρ‖∞

(
γk/2 ‖f0 −Qπ‖dπ,ν +

φ

1−√γ

)
≤
√
‖ρ‖∞ ‖1/ρ‖∞

(
γk/2 ‖f0 −Qπ‖dπ,ν +

2φ

1− γ

)
.

Recalling the value of φ completes the proof of the theorem.

5.2 Approximate Policy Improvement

Evaluating the function Qπ for a given policy π is often an intermediate step in the larger algorithm, and we now
visit the question of how we might leverage the policy evaluation result of the previous section. We start with a basic
result, which resembles classical bounds for approximate policy iteration, but has some differences due to our use
of Q functions rather than V functions. These bounds are apt for tabular function classes and small state spaces, as
they rely on a uniformly good approximation to Qπ at all states and actions. After seeing the underlying reasons
that give rise to such limitations, we will consider a better policy improvement operator described in the Conservative
Policy Iteration [Kakade and Langford, 2002], and discuss using the results of our previous section as a plug-in to that
algorithm.

5.2.1 Greedy policy improvement with `∞ approximation

The setting of this section closely resembles that of the Policy Iteration algorithm in Chapter 1.2. We consider the
following iterative procedure, which starts with an initial policy π0 and updates for i = 0, 1, 2, . . .:

Obtain Q̂i such that ‖Q̂i −Qπi‖∞ ≤ ε. Set πi+1(s) = argmaxa∈A Q̂i(s, a) for all s ∈ S. (5.4)

We do not discuss how to obtain such an approximation Q̂ for Qπi here, but instead try to understand the reason
why need such a uniformly good approximation, and how we might relax the condition. Intuitively, the greedy policy
improvement in Equation 5.4 can induce a policy πi+1 which is dramatically different from πi in its state visitation
distribution. If we only had approximation guarantees between Q̂ and Qπ on dπi , we can already guess that it would
not be sufficient as the approximation might be arbitrarily worse on dπi+1 , and if this happens, then πi+1 is being
defined rather arbitrarily on the states which are not visited under dπi . That is, we are effectively encountering another
instance of the distribution mismatch which we also saw in the policy gradient analysis earlier.

In order to quantify these intuitions, we will establish the following result regarding the iteration (5.4).

Theorem 5.7. The approximate policy iteration algorithm described in Algorithm 5.4 satisfies for all k = 0, 1, 2, . . .

‖Q? −Qπk‖∞ ≤ γ
k ‖Q? −Qπ0‖∞ +

2εγ

(1− γ)2
.

Proof: As in the case of Theorem 1.9, the main step is to show that the distance between Q? and Qπi contracts when
we do one step of policy improvement. However, we now need to account for the approximation in Q̂i in order to show
that the contraction is not offset by the errors in our estimates. We start with some simple definitions and properties.
For a policy π, let Q̂ be a function satisfying ‖Q̂−Qπ‖∞ ≤ ε, and let

π+(s) = argmaxa∈AQ
π(s, a) and π̃(s) = argmaxa∈A Q̂(s, a).
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Based on the definitions of Q̂ and π̃, it is easily verified that for all states s, Aπ(s, π̃(s)) ≥ −2ε. That is, π̃(s) is a
2ε-approximate greedy action with respect toQπ(s, a). Based on this, the performance difference lemma (Lemma 4.5)
gives that

Qπ̃(s, a)−Qπ(s, a) = γ
∑
s′∈S

P (s′|s, a)(V π̃(s′)− V π(s′))

=
gamma

1− γ
∑
s′∈S

P (s′|s, a)
∑
s′′∈S

dπ̃s′A
π(s′′, π̃(s′′))

≥ − 2εγ

1− γ
.

In the middle equality, we recall the notation dπs for the distribution over states induced under π starting from the state
s. Now we can lower bound the one-step policy improvement. For this, recall the notation T for the Bellman operator
which maps T Q = (1− γ)r + γPVQ, where VQ(s) = maxa∈AQ(s, a)

Qπ̃(s, a)− T Qπ(s, a) = γ
∑
s′∈S

P (s′|s, a)(V π̃(s′)−max
a′∈A

Qπ(s′, a′))

≥ γ
∑
s′∈S

P (s′|s, a)(V π̃(s′)−Qπ(s′, π̃(s′))− 2ε)

= −2εγ + γ
∑
s′∈S

P (s′|s, a)(Qπ̃(s′, π̃(s′))−Qπ(s′, π̃(s′)))

≥ −2εγ − 2εγ2

1− γ
= − 2εγ

1− γ
,

where the first inequality uses the observation that Aπ(s′, π̃(s′)) ≥ −2ε, while second inequality from our earlier
bound on the difference between Qπ̃ and Qπ .

Now following the same logic as in the convergence analysis of policy iteration, we see that

‖Q? −Qπ̃‖∞ ≤ ‖Q? − T Qπ‖∞ +
2εγ

1− γ

= ‖T Q? − T Qπ‖∞ +
2εγ

1− γ

≤ γ‖Q? −Qπ‖∞ +
2εγ

1− γ
.

Applying this inequality between every pair of successive iterates πi and πi+1 and summing the resulting geometric
series yields the theorem.

While similar results have been shown before for approximate policy iteration where V -function estimates are used
instead of theQ-function estimates (see e.g. Chapter 6.2 in [Bertsekas and Tsitsiklis, 1996]), we find this version more
natural as greedy maximization using V functions requires knowledge of the MDP dynamics.

Inspecting the proof closely also show the challenges with relaxing the `∞ assumption on the closeness between Q̂
andQπ . Note that the performance difference lemma invoked in the first part of the proof requires that the estimates Q̂
be accurate on the state distribution induced by π̃. This is not feasible using techniques from the previous section, as π̃
is a function of Q̂ itself, and could pick out a pathological state distribution. One natural intuition to fix this difficulty
is by algorithmically controlling the distribution mismatch between successive policies, which we will see in our next
approach.
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5.2.2 Conservative Policy Iteration

As the name suggests, we will now describe a more conservative version of the policy iteration algorithm, which
shifts the next policy away from the current policy with a small step size to prevent drastic shifts in successive state
distributions. The algorithm and analysis is adapted from the original result of Kakade and Langford [2002].

As before, the algorithm will iteratively generate a sequence of policies πi, and we will assume that each time we can
find a Q-value estimate for πi, denoted as Q̂i which satisfies∥∥∥Q̂i −Qπi∥∥∥

dπ,U
≤ ε, (5.5)

whereU denotes the uniform distribution over actions. Given such a guarantee, it is easily seen that for any randomized
policy ν we have ∥∥∥Q̂i −Qπi∥∥∥

dπ,ν
≤
√
|A|ε. (5.6)

Given access to such estimates of Q-value functions, we now describe the Conservative Policy Iteration (CPI) algo-
rithm. For the algorithm, we use πα = (1 − α)π + απ′ to refer to a randomized policy which chooses an action
according to π with probability 1− α and according to π′ with probability α.

Algorithm 2 Conservative Policy Iteration (CPI)
Input: Initial policy π0, accuracy parameter ε.

1: for i = 0, 1, 2 . . . do
2: Obtain a Q value approximation Q̂i satisfying (5.5) with parameter ε/2

√
|A|.

3: Define π̃i(s) = argmaxa∈A Q̂i(s, a), and let Âi = Es∈dπi Q̂i(s, π̃i(s))− Q̂i(s, πi(s)).
4: If Âi ≤ 2ε, return πi.
5: Update πi+1(a | s) = (1− αi)πi(a | s) + αiπ̃i(a | s), for αi = (Âi − ε)(1− γ)/4.
6: end for

The main intuition behind the algorithm is that the stepsize α controls the difference between state distributions of πi
and πi+1. In particular, with high probability, the trajectories generated from πi and πi+1 differ in only one action.
The following result formalizes this iteration at one step of the algorithm.

Theorem 5.8 (One step improvement in CPI). Let π = πi, π̃ = π̃i and ν = πi+1 be the successive policies at one
iteration of Algorithm 2 and A = Es∼dπAπ(s, π̃(s)). Then

V ν − V π ≥ α

1− γ

(
A− 2αγ

1− γ(1− α)

)
.

Proof: By performance difference lemma, we know that

V ν − V π =

∞∑
t=0

γt
∑
s∈S

Pν(st = s)
∑
a

ν(a | s)Aπ(s, a).

Now on a time t, with probability (1 − α)t, all the actions have been chosen as per π on the previous time steps. If
any actions were chosen by ν with the remaining probability 1− (1− α)t, we can simply lower bound the advantage
function by its largest value on that event. Doing so, we see that

V ν − V π ≥
∞∑
t=0

γt

(
(1− α)t

∑
s∈S

Pπ(st = s)
∑
a

ν(a | s)Aπ(s, a)− (1− (1− α)t) max
s

∑
a

ν(a | s)Aπ(s, a)

)

≥,
∞∑
t=0

γt

(∑
s∈S

Pπ(st = s)
∑
a

ν(a | s)Aπ(s, a)− 2(1− (1− α)t) max
s

∑
a

ν(a | s)Aπ(s, a)

)
.
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By definition of ν, for any state s, we observe that
∑
a ν(a |s)Aπ(s, a) = αAπ(s, π̃(s)) ≤ α. Summing the geometric

series, we see that

V ν − V π ≥ α

1− γ
Es∼dπAπ(s, π̃(s))− 2α

(
1

1− γ
− 1

1− γ(1− α)

)
.

Simplifying terms yields the result.

A crucial aspect of this theorem is that it always requires a good estimate of the advantage function of π only under
dπ , which is the main upshot of the conservative updates. Our next result bounds the gap between the quantities Âi
and the true advantages of π̃i over πi at each iteration.

Lemma 5.9. Using the notation of Theorem 5.8, under the conditions of Equation 5.6, we have Es∼dπ maxa∈AA
πi(s, a) ≤

Âi + 2ε
√
|A|.

Proof: Note that by Jensen’s inequality, we have Es∼dπ,ν |Q̂(s, a) − Qπ(s, a)| ≤
∥∥∥Q̂−Qπ∥∥∥

dπ,ν
, where we have

dropped the subscripts involving i as we focus on a specific iteration. Denote π+(s) = argmaxa∈AQ
π(s, a). Now

we have

Es,a∼dπAπ(s, π+(s)) = Es∼dπ
[
Qπ(s, π+(s))− Q̂(s, π+(s)) + Q̂(s, π+(s))− Q̂(s, π̃(s)) + Q̂(s, π̃(s))

−Q̂(s, π(s)) + Q̂(s, π(s))−Qπ(s, π(s))
]

≤
∥∥∥Q̂−Qπ∥∥∥

dπ,π+
+
∥∥∥Q̂−Qπ∥∥∥

dπ,π
+ Es∼dπ [Q̂(s, π̃(s))− Q̂(s, π(s))],

where we have used the inequality Q̂(s, π+(s)) ≤ Q̂(s, π̃(s)) by the definition of π̃.

Putting these two results together, we obtain the following useful corollary which gives a lower bound on the per-step
improvement of the CPI algorithm for our choice of αi.

Corollary 5.10. At each iteration of Algorithm 2, we have V πi+1 − V πi ≥ (Âi − ε)2/8.

Proof: From Theorem 5.8, we have

V πi+1 − V πi ≥ α

1− γ
Es∼dπAπi(s, π̃i(s))−

2α2

(1− γ)(1− γ(1− α))

≥ α

1− γ
(Âi − ε)−

2α2

(1− γ)(1− γ(1− α))
(Lemma 5.9 and Line 2 in Algorithm 2)

≥ α

1− γ

(
Âi − ε−

2α

1− γ

)
≥ (Âi − ε)2

8
(Using αi = (Âi − ε)(1− γ)/4)

Putting these results together, we obtain the following overall convergence guarantee for the CPI algorithm.

Theorem 5.11 (Local optimality of CPI). Algorithm 2 terminates in at most 8/ε2 steps and outputs a policy π satis-
fying Es∼dπ maxaA

π(s, a) ≤ 3ε.

Proof: We can now prove the theorem. Note that each at each iteration, CPI either terminates or ensures that Âi ≥ 2ε.
By Corollary 5.10, this implies that if the algorithm has performed k iterations, we must have

V πk − V π0 ≥ kε2

8
.
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Since all policies take values in [0, 1], this means that the algorithm must terminate in at most 8ε2 iterations. Further-
more, at termination, we have Âk ≤ 2ε. Combined with Lemma 5.9 and the accuracy of Q̂i in Line 2 in Algorithm 2
completes the proof.

Theorem 5.11 can be viewed as a local optimality guarantee in a sense. It shows that when CPI terminates, no
improvements are possible to the returned policy π by updating it in the direction of one-step advantages. However,
this does not necessarily imply that the value of π is close to V ?. Indeed if the MDP has a chain like structure which we
saw in the policy gradient lecture, and π advances towards the goal state with a small probability only, then it is easy
to convince ourselves that no local improvements might be possible even when the policy is significantly suboptimal.
However, similar to the policy gradient analysis, we can turn this local guarantee into a global one when the resulting
policy’s state distribution is sufficiently exploratory. We formalize this intuition next.

Theorem 5.12 (Global optimality of CPI). Given any policy π satisfying Es∼dπ maxa∈AA
π(s, a) ≤ ε, we have

V ∗ − V π ≤ ε

1− γ

∥∥∥∥dπ∗dπ
∥∥∥∥
∞
≤ ε

(1− γ)2

∥∥∥∥dπ∗d0

∥∥∥∥
∞
,

where the ratio dπ
∗
/dπ represents elementwise division.

Proof: The proof is essentially contained in that of Theorem ??. By the performance difference lemma,

V ∗ − V π =
1

1− γ
Es∼dπ∗Aπ(s, π∗(s))

≤ 1

1− γ
Es∼dπ∗ max

a∈A
Aπ(s, a)

≤ 1

1− γ

∥∥∥∥dπ∗dπ
∥∥∥∥
∞

Es∼dπ max
a∈A

Aπ(s, a).

Consequently, if the initial distribution, or the visitation distribution of the final policy output by CPI is sufficiently
exploratory relative to π∗, then we converge to a globally optimal policy.

It is informative to contrast CPI and policy gradient algorithms due to the similarity of their guarantees. Both provide
local optimality guarantees. For CPI, the local optimality always holds, while for policy gradients it requires a smooth
value function as a function of the policy parameters. If the distribution mismatch between an optimal policy and the
output of the algorithm is not too large, then both algorithms further yield a near optimal policy. The similarities are
not so surprising. Both algorithms operate by making local improvements to the current policy at each iteration, by
inspecting its advantage function. The changes made to the policy are controlled using a stepsize parameter in both
the approaches. It is the actual mechanism of the improvement which differs in the two cases. Policy gradients assume
that the policy’s reward is a differentiable function of the parameters, and hence make local improvements through
gradient ascent. The differentiability is certainly an assumption and does not necessarily hold for all policy classes.
An easy example is when the policy itself is not an easily differentiable function of its parameters. For instance, if the
policy is parametrized by regression trees, then performing gradient updates can be challenging.

In CPI, on the other hand, the basic computational primitive required on the policy class is the ability to maximize
the advantage function relative to the current policy. Notice that Algorithm 2 does not necessarily restrict to a policy
class, such as a set of parametrized policies as in policy gradients. But in practice, we typically seek to find a policy
from a restricted class which yields the largest improvement on the current policy. In this case, we can no longer set
π̃i(s) = maxa∈A Q̂i(s, a), but instead seek π̃i(s) = argmaxπ∈Π Es∼dπi Q̂i(s, π(s)). The latter can be viewed as a
weighted classification problem where the policies π are seen as probabilistic classifiers mapping states to actions, and
the cost of prediction an action a on a state s is −Q̂i(s, a). If we collect a dataset of (s, a) samples with s ∼ dπi

and uniformly random actions, then it is easy to show that the best improvement policy can be obtained by easy
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modifications of existing classification or regression algorithms. This property makes CPI extremely attractive. Any
policy class over which efficient supervised learning algorithms exist can be adapted to reinforcement learning with
performance guarantees.

A second important difference between CPI and policy gradients is in the notion of locality. Policy gradient updates
are local in the parameter space, and we hope that this makes small enough changes to the state distribution that the
new policy is indeed an improvement on the older one (for instance, when we invoke the performance difference
lemma between successive iterates). While this is always true in expectation for correctly chosen stepsizes based on
properties of stochastic gradient ascent on smooth functions, the variance of the algorithm and lack of robustness to
suboptimal stepsizes can make the algorithm somewhat finicky. Indeed, there are a host of techniques in the literature
to both lower the variance (through control variates) and explicitly control the state distribution mismatch between
successive iterates of policy gradients (through trust region techniques). On the other hand, CPI explicitly controls the
amount of perturbation to the state distribution by carefully mixing policies in a manner which does not drastically
alter the trajectories with high probability. Indeed, this insight is central to the proof of CPI, and has been instrumental
in several follow-ups, both in the direct policy improvement as well as policy gradient literature.
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Our previous lectures on exploration in RL focused on the RMAX algorithm designed for the tabular representation, in
that we expect each state to be visited sufficiently often that we can maintain separate counters for the number of visits
to each state, action pair, and learn the optimal behavior separately in each state using the approximate dynamics model
derived from these counters. However, in most natural examples of RL (such as the three examples from Lecture 1),
the number of states can be rather large and infinite, and it is impractical to expect sufficiently many visits to each state
for building an approximate dynamics model, as in the RMAX algorithm. Furthermore, it is often conceptually flawed
in such problems to think of each observation received by the agent about its current environment as a distinct physical
state. For instance, several distinct utterances in the conversational agent example reveal the same underlying intent.
Similarly, in navigation tasks, the agent’s precise observation about its current location through a camera or LIDAR
sensor might differ even when the positions are equivalent in terms of the task at hand. To better make this distinction
between the semantics of a state in tabular RL, and the nature of observations in typical applications, we will reuse the
term context to refer to the object which an agent uses to form its policies and value functions in this lecture (we will
formalize this shortly), due to the semantic similarity with the usage of this term in contextual bandits.

6.1 Problem setting

For this chapter, we consider finite-horizon episodic Contextual Decision Processes (CDPs), following the setup
of Jiang et al. [2017]. Let X denote a context space. Then a CDP is described as a tuple (X ,A, P, d0, r,H), where
P : X × A → ∆(X ) is a transition operator in the context space, and d0 ∈ ∆(X ) is the distribution over the initial
contexts. H denotes the horizon of the problem. We consider finite-horizon settings, where each trajectory consists of
preciselyH steps, following which, the agent is reset according to the initial context distribution. Formally, a trajectory
τ = (x0, a0, r0, x1, . . . , xH−1, aH−1, rH−1, xH), with x0 ∼ d0 and xh ∼ P (· | xh−1, ah−1 for h ∈ {1, 2, . . . ,H}.1

A (randomized) policy is now described as a mapping from contexts to (distributions over) actions. In general, the
optimal policy in a finite horizon CDP is non-stationary, that is, it can take different actions in the same context,
depending on the step along the trajectory at which it is encountered. To avoid indexing all our policies and value
functions by h, we instead assume that each context contains as a part of it, the level at which it is encountered.
Formally, this means that there is a partition X = X0 ∪ X1 ∪ . . . ∪ Xh such that xh ∈ Xh for any trajectory τ .
This assumption (often known as the acyclic or layered structure) allows us to focus on stationary policies and value
functions.

The goal of an agent is to maximize the cumulative expected reward it obtains over H steps. We make the following
boundedness assumption on the rewards.

Assumption 6.1. Almost surely, for any tranjectory τ and step h, 0 ≤ rh ≤ 1. Additionally, 0 ≤
∑H−1
h=0 rh ≤ 1

almost surely for any trajectory τ .

While the first part of the assumption is the standard boundedness assumption we have made throughout, the second
assumes that the trajectory level rewards are also bounded by 1, instead of H , which is helpful for capturing sparse-
reward goal-directed problems with rewards only at one point in a successful trajectory. While normalization of the

1This definition considers the contexts to be Markovian in that the next context and rewards only depend on the current context and action,
independent of the history. The original definition in Jiang et al. [2017] allows non-Markovian contexts as well, but we omit this generalization for
ease of presentation.
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trajectory level reward also keeps the net reward bounded, this makes the total reward only scale as 1/H if the rewards
are sparse along the trajectory.

6.2 Value-function approximation

Now that we have set up the reinforcement learning problem as a CDP, we need a solution concept which will lead
to generalization across similar contexts, since finding the best possible policy as a function of the context has a
prohibitive sample complexity. Stated another way, we know from Chapter 2 that finding a near-optimal policy requires
Ω(|X ||A|) samples when we have |X | unique states. So without limiting the solution concept, our sample complexity
will scale with |X | which we seek to avoid. Taking a cue from value-function approximation in Chapter 5, we can
consider access to a class of functions F ⊆ {X × A → [0, 1]}, where each function f ∈ F maps a context, action
pair to [0, 1]. We also assume that f(xH , a) = 0 for all a ∈ A and f ∈ F , since there are no future rewards after the
last step.

Since we want to learn a near-optimal behavior, we seek to approximate the Q-value function of the optimal policy,
namely Q? using f ∈ F . To this end, we start with a simplifying assumption that Q? lies in F . In practice, this can
be weakened to having a good approximation for Q? in F , but we focus on exact containment for the cleanest setting.
Formally, we make the following realizability assumption.

Assumption 6.2 (Value-function realizability). The function class F satisfies Q? ∈ F .

Armed with this assumption, we may ask whether we can find Q? using a number of samples which does not scale
as |X |, trading it off for a statistical complexity measure for F such as ln |F|, as we saw in our previous chapters on
value function approximation for a fixed policy as well as for contextual bandits. The next result, adapted from Krish-
namurthy et al. [2016] shows that this is not possible.

Theorem 6.3. Fix H,K ∈ N with K ≥ 2 and ε ∈ (0,
√

1/8]. For any algorithm, there exists a CDP with a horizon of
H and K actions, a class of predictors F with |F| = KH and Q? ∈ F and a constant c > 0 such that the probability
that the algorithm outputs a policy π̂ with V (π̂) ≥ V ? − ε after collecting T trajectories from the CDP is at most 2/3
for all T ≤ cKH/ε2.

In words, the theorem says that for any algorithm, there exists a CDP where it cannot find a good policy in fewer than
an exponential number of samples in the planning horizon, even when Q? ∈ F Furthermore, the size of the class F
required for this result is KH , so that a logarithmic dependence on |F| will not explain the lower bound.

We give an informal sketch of the proof now. A formal proof will be added later. Informally, we will define a class of
CDPs, and show that one of the CDPs in this class will witness the lower bound for any possible algorithm. The CDPs
in our family all share identical transition dynamics and context space. The context space X = ∪Hh=1[K]h, so that
each context will correspond to the sequence of actions executed that lead to it in the CDP. The transition dynamics
and deterministic with P (xh ◦ ah | xh, ah) = 1, where xh ◦ ah refers to concatenating the action ah to the action
sequence denoted by xh. Each CDP in the family corresponds to a path p of length H , and the reward function is
non-zero only in the state xH . In particular, we set rp(p) = Bernoulli(1/2 + ε) and rp(xH) = Bernoulli(1/2) for any
other terminal state, in the CDP parameterized by the path p. We define the class F to similarly consist of functions
fp where

fp(x, a) =
1

2
+ ε1(x ◦ a is a prefix of p).

Clearly fp describes Q? in the CDP parameterized by p. As we have a total of KH paths with K actions over a
horizon of H , we see that |F| = KH . Furthermore, we have V ? = 1/2 + ε for each CDP in the family by following
the path p in the CDP corresponding to p. It is also clear that finding a policy π̂ such that V π̂ ≥ V ?− ε is equivalent to
identifying the path p. Thus we can prove the theorem by establishing that no algorithm can successfully identify the



68 Chapter 6:

path parameter correctly for each CDP in our family. To do this, we relate our construction to identifying the best arm
in a multi-armed bandit problem with KH arms. This is done by viewing each path as an arm. The reward distribution
at the terminal state of that path gives the reward distribution for the corresponding arm. Now we note that the setup of
this multi-armed bandit problem is exactly identical to the lower bound instance of multi-armed bandits [Auer et al.,
2002]. Since their lower bound scales linearly in the number of actions, we get the stated lower bound.

6.3 Bellman Rank

Having concluded that we cannot find a near optimal policy using a reasonable number of samples with just the
realizability assumption, it is clear that additional structural assumptions on the problem are required in order to make
progress. We now give one example of such a structure, named Bellman rank, which was introduced by Jiang et al.
[2017]. In order to motivate and define this quantity, we need some additional notation. For a function f ∈ F , let us
define πf (x) = argmaxa∈A f(x, a). For a function f , we define Vf = Ex∼d0f(x, πf (x)) to be the value predicted by
f for its greedy policy in the initial state distribution. For a policy π, function f ∈ F and h ∈ [H], let us also define
the average Bellman error:

E(f, π, h) = E[f(xh, ah)− rh − f(xh+1, ah+1) | a0:h−1 ∼ π, ah:h+1 ∼ πf ]. (6.1)

This is called the average Bellman error as it is not the error on an individual context x, but an expected error under
the distribution over contexts induced after taking h− 1 actions according to π. The error checks the self-consistency
of f with its own predicted future, but only for actions chosen by its greedy policy at steps h and h + 1. To see why
the definition might be natural, we note that the following property of Q? from the Bellman optimality equations.

Fact 6.4. E(Q?, π, h) = 0, for all policies π and levels h.

The fact holds since Q? satisfies Q?(x, a) = r(x, a) +E[Q?(x′, π?(x′))] | x, a for each context x, and hence also for
any distribution over x induced by a policy. More generally, these errors are extremely useful due to the following
lemma.

Lemma 6.5 (Policy loss decomposition). For any f : X ×A → [0, 1], we have

Vf − V πf =

H−1∑
h=0

E(f, πf , h).

The lemma effectively says that finding a policy πf is equivalent to finding a function f with large Vf , as long as
the Bellman errors for f under the context distributions induced by πf are 0 at each level. Note that the lemma is an
equality.

Proof: Expanding the RHS of the lemma, we see that

H−1∑
h=0

E(f, πf , h) =

H−1∑
h=0

E[f(xh, ah)− rh − f(xh+1, ah+1) | a0:h−1 ∼ πf , ah:h+1 ∼ πf ]

=

H−1∑
h=0

E[f(xh, ah)− rh − f(xh+1, ah+1) | a0:H−1 ∼ πf ]

= E[f(x0, πf (x0))]− E[f(xH , aH) | a0:H−1 ∼ πf ]− E[

H−1∑
h=0

rh | a0:H−1 ∼ πf ]

= E[f(x0, πf (x0))]− V πf = Vf − V πf .
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Here the second equality follows since all the actions are being chosen according to πf in each summand. This
completes the proof.

This lemma is powerful, since the initial state distribution is fixed and can be sampled from. The lemma suggests the
following optimization problem to find Q?.

max
f∈F

Vf subject to E(f, πf , h) = 0 for all h ∈ [H − 1]. (6.2)

The objective function in this problem is easy to optimize, since Vf for any function f can be easily approximated with
enough samples from d0. However, the constraints are significantly harder to enforce, since they require evaluating
the Bellman error of f on the context distributions induced by πf . Since each f ’s Bellman error is being evaluated on
a different policy, it is not clear how we might check these constraints without effectively collecting data with each
policy πf for f ∈ F , in which case we will have a sample complexity scaling with O(|F|) instead of O(ln |F|).

In order to get around this fact, we make an observation and an assumption. We observe that the set of equations
enforced in the optimization problem (6.2) are only a subset of those satisfied by Q? as per Fact 6.4. In order to better
leverage the structure of Q?, we strengthen the constraints in (6.2) to instead assert:

E(f, πg, h) = 0 for all g ∈ F and h ∈ [H − 1]. (6.3)

That is, we demand no Bellman error under f for any greedy policy induced by functions in F . Note that we have
restricted attention to all greedy policies as per F instead of all policies in Fact 6.4, since this will suffice for our
purposes as will shortly see.

This strengthening of constraints looks promising on the one hand as we can use data collected with one policy to
simultaneously rule out many candidate f ’s. At the same time, it might not be sufficient in isolation, since all policies
{πf : f ∈ F} might induce very different distributions over trajectories and we might still end up needing O(|F|)
samples to even test the feasibility of a given f . This hardness is indeed fundamental and the core driving force behind
the lower bound, where detecting the suboptimality of a wrong function f requires executing either the path it prefers,
or the optimal path p in the CDP parameterized by p.

To circumvent the above challenge, we now make a structural assumption on average Bellman errors, which allows us
to reason about the Bellman errors induced by all policies πf in a sample-efficient manner. For any h ∈ [H − 1], let
is define the Bellman error matrix Eh ∈ R|F|×|F| as

[Eh]f,g = E(f, πg, h). (6.4)

That is, each entry in the matrix captures the Bellman error of the function indexed by the row under the greedy policy
induced by the column at step h. With this notation, we define the Bellman rank of a CDP and a function class F
below.

Definition 6.6 (Bellman Rank). The Bellman rank of a CDP and a function class F is the smallest integer M such
that rank(Eh) ≤M for all h ∈ [H − 1].

Intuitively, if the Bellman rank is small, then for any level h, the number of linearly independent columns is small.
That is, the average Bellman error for any function under most policies can be expressed as linear combination of the
Bellman errors of that function on a small set of policies corresponding to the linearly independent column. Note that
the definition presented here is a simplification of the original definition from Jiang et al. [2017]. There are several
known examples of problem structures with a small Bellman rank described in that paper. It is easily seen that the
Bellman rank of a CDP is never larger than the number of unique contexts, so that it legitimately generalizes the
concept of states in a tabular setting. More interestingly, it can be shown that Bellman rank can be further upper
bounded in terms of latent quantities such as the rank of the transition matrix, or the number of latent states if the
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CDP has an equivalent formulation as an MDP with a small number of latent states. We refer the reader to Jiang et al.
[2017] for detailed examples, as well as connections of Bellman rank with other rank type notions in the RL literature
to measure problem complexity.

6.4 Sample-efficient learning for CDPs with a small Bellman rank

Having defined our main structural assumption, we now describe an algorithm whose sample complexity depends on
the Bellman rank, with no explicit dependence on |X | and only logarithmic scaling with |F|. For ease of presentation,
we will assume that all the expectations can be measured exactly with no errors, which serves to illustrate the key
ideas. For a more careful analysis with finite samples, we refer the reader to Jiang et al. [2017]. The algorithm, named
OLIVE for Optimism Led Iterative Value-function Elimination is an iterative algorithm which successively prunes
value functions that violate one of the constraints described in (6.3). It then uses the principle of optimism in the face
of uncertainty to select its next policy. The algorithm is described in Algorithm 3.

Algorithm 3 The OLIVE algorithm for CDPs with low Bellman rank
Input: Function class F .

1: Initialize F0 = F .
2: for t = 1, 2, . . . , do
3: Define ft = argmaxf∈Ft−1

Vf and πt = πft .
4: if Vft = V πt then return πt.
5: else
6: Update Ft = {f ∈ Ft−1 : E(f, πt, h) = 0, for all h ∈ [H − 1]}.
7: end if
8: end for

The update of Ft in Line 6 requires some care as naı́vely it requires executing a different policy πf for each function
f at steps h and h+ 1. However, these expectations are easy to simultaneously evaluate in a sample efficient manner,
since

E(f, π, h) = E[K1(ah = πf (xh))(f(xh, ah)− rh − f(xh+1, πf (xh+1))) | a0:h−1 ∼ π, ah ∼ A u.a.r.].

This observation allows us to compute all the Bellman errors in Line 6 using expectation under a single distribution.
By standard concentration arguments, all these expectations are also easy to approximate with finitely many samples,
with only a logarithmic dependence on |F| coming from a union bound.

Since we assume that all the expectations are available exactly, the main complexity analysis in OLIVE concerns the
number of iterations before it terminates. When we estimate expectations using samples, this iteration complexity
is critical as it also scales the sample complexity of the algorithm. We will state and prove the following theorem
regarding the iteration complexity of OLIVE.

Theorem 6.7. For any CDP and F with Bellman rank M , OLIVE terminates in at most MH iterations and outputs
π?.

Proof: Consider an iteration t of OLIVE. Due to Assumption 6.2 and Fact 6.4, we know that Q? ∈ Ft−1. Suppose
OLIVE terminates at this iteration and returns πt. Then we have

V πt = Vft = max
f∈Ft−1

Vf ≥ VQ? = V ?,

since Q? ∈ Ft−1. So the algorithm correctly outputs an optimal policy when it terminates.
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On the other hand, if it does not terminate then V πt 6= Vft and Lemma 6.5 implies that E(ft, πt, h) > 0 for some step
h ∈ [H − 1]. This certainly ensures that ft /∈ Ft, but has significantly stronger implications. Note that ft ∈ Ft−1

implies that E(ft, πs, h) = 0 for all s < t and h ∈ [H − 1]. Since we just concluded that E(ft, πt, h) > 0 for some h,
it must be the case that the column corresponding to πt is linearly independent of those corresponding to π1, . . . , πt−1

in the matrix Eh. Consequently, at each non-final iteration, OLIVE increases the rank of at least one matrix Eh by 1.
Since the rank of each matrix is bounded by M , after a total of MH iterations, the algorithm must terminate, which
gives the statement of the theorem.

The proof of the theorem makes it precise that the factorization underlying Bellman rank really plays the role of an
efficient basis for exploration in this complex CDP. Extending these ideas to noisy estimates of expectations requires
some care since algebraic notions like rank are not robust to noise. Instead Jiang et al. [2017] use a more general
volumetric argument to analyze the noisy case, as well as describe robustness to requirements of exact low-rank
factorization and realizability.

Unfortunately, the OLIVE algorithm is not computationally efficient, and a computational hardness result was discov-
ered by Dann et al. [2018]. Developing both statistically and computationally efficient exploration algorithms for RL
with rich observations is an area of active research.
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Apprenticeship Learning, Imitation Learning, and Behavioral Cloning
Alekh Agarwal, Nan Jiang, Sham M. Kakade Chapter 7

Learning from demonstrations is the problem of learning a policy from expert demonstrations. In contrast to reinforce-
ment learning, such procedures do not require carefully designed reward functions.

Algorithms for learning from demonstrations may be classified according to the interaction model they operate in. The
two popular approaches

1. Behavioral Cloning (a.k.a. Imitation Learning): the learner attempts to directly learn a state-to-action map from
the expert demonstrations, where we observe the state-action pairs on expert’s trajectories. [Ross and Bagnell,
2010].

2. Inverse Reinforcement Learning: The learner chooses the best policy to optimise a reward function that is
inferred from expert demonstrations [Ng et al., 2000, Abbeel and Ng, 2004, Syed and Schapire, 2008].

3. Learning from observations: the learner attempts to directly learn a state-to-action map from the expert state
trajectories, where we only observe the states on the expert’s trajectories.

7.1 Linear Programming Formulations

Before we look at solution concepts, it is helpful to understand a different formulation of finding a optimal policy for
a known MDP.

7.1.1 The Primal LP

Consider the optimization problem over V ∈ R|S|:

max
∑
s

d0(s)V (s)

subject to V (s) ≥ (1− γ)r(s, a) + γ
∑
s′

P (s′|s, a)V (s′) ∀a ∈ A, s ∈ S

The optimal value function V ?(d0) is the value of this linear program, and the policy derived from the solution vector
V achieves the optimal value V ?(d0).

7.1.2 The Dual LP

For a fixed (possibly stochastic) policy π, let us define the state-action visitation distribution µπd0 as:

µπd0(s, a) = (1− γ)

∞∑
t=0

γtPrπ(st = s, at = a)
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where Prπ(st = s, at = a) is the state-action visitation probability, where we use π in M starting at state s0 ∼ d0.
We drop the d0 dependence when clear from context.

It is possible to verify that µ satisfies, for all states s ∈ S:∑
a

µπ(s, a) = (1− γ)d0(s) + γ
∑
s′,a′

P (s|s′, a′)µπ(s′, a′)

Now let us define the state-action polytope as follows:

K := {µ|µ ≥ 0 and
∑
a

µ(s, a) = (1− γ)d0(s) + γ
∑
s′,a′

P (s|s′, a′)µ(s′, a′)}

Note that KWe now see that this set precisely characterizes all state-action visitation distributions.

Lemma 7.1. [Puterman, 1994] We have that K is equal to the set of all feasible state-action distributions, i.e. µ ∈ K
if and only if there exists a (stationary) policy π such that µπ = µ.

For µ ∈ RS×A, the dual LP formulation is as follows:

max
∑
s,a

µ(s, a)r(s, a)

subject to µ ∈ K

If µ? is the solution to this LP, then we have that:

π?(a|s) =
µ?(s, a)∑
a′ µ

?(s, a′)
.

An alternative optimal policy is argmaxa µ
?(s, a) (and these policies are identical if the optimal policy is unique).

7.2 Behavioral Cloning

Let us now suppose that we observe some expert behavior πe, where we hope that πe has value near to that of an
optimal policy.

In the simplest setting, let us assume when we query the expert, we can get an independent sample:

(s, a) ∼ µπe .

Note that if we were observing independent expert trajectories of length c
1−γ (for a constant c), then each trajectory

gives us c
1−γ correlated samples.

For analysis, it is more natural to abstract away this issue for now and assume the samples are independent. One can
address this dependence issue in a algorithm dependent manner.

Assume we obtain m samples from the expert. Let us say that µ̂e is the empirical estimate of |µπe |. It will also be
natural to consider the effectiveness of various approaches when specialized do the tabular for setting. Here, it is
helpful to observe that, with a standard concentration argument implies, we have with probability greater than 1− δ,

‖µπe − µ̂e‖1 ≤ 2

√
|S||A| log(1/δ)

m
(7.1)
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7.2.1 Behavioral Cloning via Supervised Learning

The supervised learning approach is to learn a policy that matches the behavioral policy. In the tabular setting, the
most straightforward approach is to use the empirical samples µ̂e to learn a deterministic multi-class classifier; note
that this classifier is actually our policy as it is predicting our actions. Let us suppose that our classification error is
less than ε; precisely, suppose

Es,a∼µπe
[
1
[
πSL(s) 6= a

]]
≤ ε . (7.2)

where πSL : S → A is our deterministic policy.

Theorem 7.2. Suppose the classification error of πSL is less than ε, as per Equation 7.2, then we have:

|V πSL(d0)− V πe(d0)| ≤ ε

1− γ

Proof: Due to that AπSL(s, πSL(s)) = 0, the performance difference lemma (Lemma 4.5) implies:

|V πSL(d0)− V πe(d0)| =
1

1− γ
∣∣Es,a∼µπe [AπSL(s, a)]

∣∣
=

1

1− γ

∣∣∣∣Es,a∼µπe[AπSL(s, a)1
[
πSL(s) = a

]]
+ Es,a∼µπe

[
AπSL(s, a)1

[
πSL(s) 6= a

]]∣∣∣∣
=

1

1− γ

∣∣∣∣0 + Es,a∼µπe
[
AπSL(s, a)1

[
πSL(s) 6= a

]]∣∣∣∣
≤ 1

1− γ
‖AπSL‖∞ · Es,a∼µπe

[
1
[
πSL(s) 6= a

]]
≤ ε

1− γ
,

which completes the proof.

The tabular case: In the tabular setting, the most straightforward approach is to use the empirical estimate m̂u.
Specifically, for s s.t.

∑
a′ µ̂

e(s, a′) > 0, then we can use:

πSL(a|s) =
µ̂e(s, a)∑
a′ µ̂

e(s, a′)
.

else we can use any action at an unobserved state.

Corollary 7.3. Suppose the expert policy is deterministic. In the tabular setting, with m samples, we have that with
probability greater than 1− δ,

|V πSL(d0)− V πe(d0)| ≤ 2

1− γ

√
|S||A| log(1/δ)

m

Proof:

Es,a∼µπe
[
1
[
πSL(s) 6= a

]]
=

∑
s,a

µπe(s, a)
[
1
[
πSL(s) 6= a

]]
=

∑
s,a

µ̂e(s, a)
[
1
[
πSL(s) 6= a

]]
+
∑
s,a

(
µπe(s, a)− µ̂e(s, a)

)[
1
[
πSL(s) 6= a

]]
= 0 + ‖µπe − µ̂e‖1 ,

which completes the proof using Equation 7.1.
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Lower bounds: To be added...

7.2.2 Behavioral Cloning via Distribution Matching

Note the above algorithm does not need any further interaction with the MDP. We may hope that we can improve upon
this algorithm if we allow for interaction with the world. In many cases, expert demonstrations are costly to obtain
while interactions with the environment are far less costly.

Let us consider now the case where the model dynamics P are known. We now present an alternative algorithm, which
provides a substantial improvement in the tabular case.

Let us suppose we use a density estimation algorithm which has ε error in the following sense:

‖µπe − µ̂e‖1 ≤ ε (7.3)

One natural algorithm is as follows:

min
∑
s,a

|µ(s, a)− µ̂e(s, a)| (7.4)

subject to µ ∈ K

Note that the cost function is convex subject to convex constraints. In fact, for the particular case of an `1 cost function,
we can actually formulate the optimization program as a linear program.

If µDM is a solution to this LP, then let us define the policy to be:

πDM(a|s) =
µDM(s, a)∑
a′ µDM(s, a′)

.

Theorem 7.4. Suppose the density estimation error of µ̂e is less than ε, as per Equation 7.3, then we have:

|V πDM(d0)− V πe(d0)| ≤ 2ε

Proof: Note that µπe is a feasible point in the linear program in Equation 7.4, which has an objective value of ε. Let
µ? be the optimal solution, since µ? has a lower objective value, we have that:

‖µDM − µ̂e‖1 ≤ ε

By construction, µDM = µπDM , so we have that:

|V πDM(d0)− V πe(d0)| =

∣∣∣∣∑
s,a

µDM(s, a)r(s, a)−
∑
s,a

µπer(s, a)|

=

∣∣∣∣∑
s,a

(
µDM(s, a)− µπe

)
r(s, a)

∣∣∣∣
≤ ‖µDM − µπe‖1
≤ ‖µDM − µ̂e‖1 + ‖µ̂e − µπe‖1
≤ 2ε,

which completes the proof.
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The tabular case: In the tabular setting, the most straightforward approach is to use the empirical plugin estimate,
µ̂e, of µπe . By Equation 7.1), we have the immediate Corollary, which is an improvement by a factor of 1/(1− γ).

Corollary 7.5. Suppose the expert policy is deterministic. In the tabular setting, with m samples, we have that with
probability greater than 1− δ,

|V πSL(d0)− V πe(d0)| ≤ 4

√
|S||A| log(1/δ)

m

Lower bounds: To be added... (basically, with knowledge of P , this approach is sample optimal.)

7.2.3 Sample Efficiency: comparing the approaches

While density estimation is often considered more challenging than supervised learning (i.e. regression or classifica-
tion), it is important to note that in the tabular setting, the distributional matching approach (when P is known or when
we have simulation access) is more sample efficient with regards to expert demonstrations. This suggest that the rely-
ing on supervised learning in setting with function approximation may be suboptimal and that alternative approaches
may be more sample efficient.

7.3 Learning from Observation

Let us now suppose that we only observe the trajectories of states from an expert, as opposed to the state-action pairs.
As before, we only assume sampling access to states via µπe . In particular, let us define the marginal distribution over
states as:

dπe(s) =
∑
a

µπe(s, a) .

Now, when we query the expert, assume we get an independent sample:

s ∼ dπe .

Again, if we were observing independent expert trajectories of length c
1−γ (for a constant c), then each trajectory gives

us c
1−γ correlated samples. For analysis, it is more natural to abstract away this issue for now and assume the samples

are independent.

7.3.1 Learning from Observations via Distribution Matching

Again, assume the model dynamics P are known. Let us suppose we use a density estimation algorithm which has ε
error in the following sense:

‖dπe − d̂e‖1 ≤ ε (7.5)

One natural algorithm is as follows:

min
∑
s

|d̂e(s)−
∑
a

µ(s, a)| (7.6)

subject to µ ∈ K

Note that the cost function is convex subject to convex constraints, and, for this cost function, we can actually formulate
the optimization program as a linear program.
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If µDM is a solution to this LP, then let us define the policy to be:

πDM(a|s) =
µDM(s, a)∑
a′ µDM(s, a′)

.

Theorem 7.6. Assume the reward function of the expert is only state dependent, i.e. re(s, a) = re(s). Suppose the
density estimation error of d̂e is less than ε, as per Equation 7.5, then we have:

|V πDM(d0)− V πe(d0)| ≤ 2ε

Proof: To be added...

7.4 Inverse Reinforcement Learning

In inverse reinforcement learning, let us say that the expert has an unknown reward function re(s, a). In many settings,
writing down a an effective reward function down by hand is difficult. Here, we may hope that by using expert
demonstrations, we may seek to extract a reward function from the expert, such that if we planned according to the
our learned reward function, our value would be as good as the expert (on the experts unknown reward function).

Here let us assume we know some basis of reward functions φ1, . . . φd, where each φi : S ×A → R, and that r lies in
this basis. Specifically, suppose for all s ∈ S and a ∈ A that

re(s, a) =

d∑
i=1

wiφi(s, a), (7.7)

where w are the unknown coefficients.

Again, suppose that the model P is known. Also, note that experts value function with respect to basis function φi
(instead of re) is:

V µ
πe

i (d0) :=
∑
s,a

µπe(s, a)φi(s, a).

We will use V ei as shorthand for V µ
πe

i (d0). Note that with samples we can estimate V ei as follows:

V̂ ei :=
∑
s,a

µ̂e(s, a)φi(s, a).

where we can take µ̂e to be the plug-in estimator.

For now, let us suppose that V̂ ei is known exactly in order to have a more transparent algorithm. Incorporating sampling
error is possible. Consider the following feasibility problem for µ ∈ RS×A:

find µ

subject to µ ∈ K
V ei =

∑
s,a

µ(s, a)φi(s, a) ∀i ∈ {1, . . . d}

Suppose µIRL is a feasible point in this LP. Let us define the implied policy to be:

πIRL(a|s) =
µIRL(s, a)∑
a′ µIRL(s, a′)

.
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Theorem 7.7. The above feasibility problem is non-empty. Furthermore, the implied policy πIRL (derived from the
above LP) satisfies V πIRL

M (d0) = V µ
πe

M (d0), where M is the MDP with experts reward function re.

Proof: By construction, µπe is a feasible point. Now suppose µIRL is a feasible point. By construction, V πIRL
i = V̂ ei

for all i, due to that πIRL has state-action visitation frequency µIRL. The proof is completed using the span condition
in Equation 7.7.
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Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics, pages 661–668, 2010.

Satinder Singh and Richard Yee. An upper bound on the loss from approximate optimal-value functions. Machine
Learning, 16(3):227–233, 1994.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In Advances in Neural Information Processing Systems, volume 99,
pages 1057–1063, 1999.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. In Advances in neural
information processing systems, pages 1449–1456, 2008.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.



Appendix A

Concentration

Lemma A.1. (Hoeffding’s inequality) Suppose X1, X2, . . . Xn are a sequence of independent, identically distributed
(i.i.d.) random variables with mean µ. Let X̄n = n−1

∑n
i=1Xi. Suppose that Xi ∈ [b−, b+] with probability 1, then

P (X̄n ≥ µ+ ε) ≤ e−2nε2/(b+−b−)2 .

Similarly,
P (X̄n ≤ µ− ε) ≤ e−2nε2/(b+−b−)2 .

The Chernoff bound implies that with probability 1− δ:

X̄n − EX ≤ (b+ − b−)
√

ln(1/δ)/(2n) .

Lemma A.2. (Bernstein’s inequality) SupposeX1, . . . , Xn are independent random variables. Let X̄n = n−1
∑n
i=1Xi,

µ = EX̄n, and Var(Xi) denote the variance of Xi. If Xi − EXi ≤ b for all i, then

P (X̄n ≥ µ+ ε) ≤ exp

[
− n2ε2

2
∑n
i=1 Var(Xi) + 2nbε/3

]
.

If all the variances are equal, the Bernstein inequality implies that, with probability at least 1− δ,

X̄n − EX ≤
√

2Var(X) ln(1/δ)/n+
2b ln(1/δ)

3n
.

Lemma A.3 (Version of Freedman’s inequality from Beygelzimer et al. [2011]). Let X1, X2, . . . , XT be a sequence
of real-valued random variables adapted to the filtration Fi. That is, Xi is measurable with respect to Fi and further
assume that E[Xi | Fi−1]. Define S =

∑T
t=1Xt, V =

∑T
t=1 E[X2

t | Ft−1] and let Xt ≤ R almost surely for all t.
Then for any δ ∈ (0, 1) and λ ∈ [0, 1/R], with probability at least 1− δ,

S ≤ (e− 2)λV +
ln(1/δ)

λ
.

In particular, choosing λ = min
{

1
R ,
√

ln(1/δ)V
}

, we get the Bernstein-style bound

S ≤ 2

√
V ln

1

δ
+R ln

1

δ
.
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