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Function approximation goal

Credit Assignment

Exploration Generalization

Focus on episodic setting, with horizon H

Given function class &, find € sub-optimal policy in poly(comp(F), |A |, H,1/€) samples



Function approximation approaches

Policy search: Policy class I C {X — &}

e Realizability: optimal policy 7* € I1

Value-based: Class & C {X X &/ — R} of candidate Q functions

® Realizability: Q* € &

® Recall:

H
Or(x,a) = -[Z ro|x, =x,a,=a,7*] = E[r+ max Or (x’,a) | x, =x,a,=a]
a
=h

Model-based: Class # C {X X 4 — R X A(X)} of dynamics models



A Key challenge: Distribution shift

Theorem [General lower bound]: With finite class & of Q functions that realize O,

Q(min(A7 log | F |, | F | )/e?) samples are necessary

Distribution shift

e Predicting O™ accurately on previous data does not directly
imply a good policy (unlike supervised learning)

Conceptual solutions

1. Assume function class supports “extrapolation”

X

(a0
2. Assume environment only has “a few” distributions W,

[Kearns-Mansour-Ng-02] [Kakade-03]



Function approximation landscape

(Near-)Deterministic Linear Q*

[WV’13, DLWZ’'19, DLMW’20]

Bilinear classes
[DKLLMSWW’21]

Linear Q* & V* Linear Mixture |
Bellman Completeness [MJTS’20, JYSW’20]
ZLKB20] Kernelized LQR
[K LO '20]
Linear MDPs Low Occupancy
Complexity |

Reactive POMDPs
[ AL16]

Bellman Eluder Dimension
[JLM’21, WSY’20]

Factored MDPs

Block MDPs Low rank .
Feature Selection Witness Rank

[AK  10] [SJKAL'19]
Bellman Rank
[JKALS'17]

—

Adapted from Sham Kakade —_



Part 3A: Linear methods



Most basic question

Given feature map ¢ : & X o — R%such that Q*(x, a) = (0%, p(x, a))
Is poly(d, H,1/€) sample complexity possible?

¢(a,)

® Yes for supervised learning and bandits

® Query on basis/spanner, then extrapolate

\What about for RL?



Linear BL arms race

Assumption Setting Notes Reference
Linear Q*, deterministic Online Exploration Constraint propagation Wen-van-Roy-13
Linear Q, low var., gap Online Exploration Rollout based Du-Luo-Wang-Zhang-19
Linear Q/A\pi for all \pi Sample-based planning APl + Exp. Design Lat-Sze-Wei-20
Linear QA\pi for all \pi Batch/offline setting poly(d) actions Wang-Fos-Kak-20
Linear Q~ Sample-based planning exp(d) actions Wel-Amo-Sze-20
Linear Q" + gap Sample-based planning Rollout + Exp. Design Du-Kak-Wang-Yang-20
Online Exploration exp(d) actions Wang-Wang-Ka
Linear V* Sample-based planning | (dH)* sample comp. Wei-Amcé—ZJea_r;Abo—Jia—

Challenge: Error amplification in dynamic programming

Adapted from Gellert Weisz



A linear lower bound

Theorem [Wang-Wang-Kakade-21]: There exists a class of linearly realizable MDPs (with

constant gap) s.t. any online RL algorithm requires min(€2(29), Q(2)) samples to obtain a
near optimal policy.

® [xtends argument of Weisz-Amortilla-
Szepesvari-20 from the planning setting

® [dea: exp(d) states and actions with near-
orthogonal features (JL lemma)

e Fundamentally different from SL and bandits

® RL indeed requires strong assumptions!



Linear upper bound: Low rank/Linear MDP

Recall;

= E[max g(x',a’) | x, a]
g’

Transitions and rewards are linear in feature map @(x, a)

Lemma: For any functon g : I X & — R, 40 € | 4 such that

<9, ¢(X, Cl)> — (Pfg)x,a
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LSVI-UCB
Algorithm

® Optimistic dynamic programming

2
0, := arg mgin z ((6’, ¢(x;, a)) — 1, — max 01X 1, a’))

A

Elliptical bonus:

‘gb(xa a)HZZI

e Define Qh(x, a) = (é’h, d(x,a)) + bonusy(x, a)

¢ Collect data with greedy policy 7,(x) = arg max Qh(x, a)
da

Theorem [Jin-Yang-Wang-Jordan-19]: In low rank MDP, LSVI-UCB has regret

O(\/ d°’H>N) over N episodes with high probability

11



LSVI-UCB: Analysis

e Similar to UCB-VI [1I; If bonus dominates regression (prediction) error Covering argument

Regret < Z Z bonus,(x, ;,, a, )
t h

® | inear MDP property prevents error amplification (controls regression error)

incurs extra \/c_i factor

Héh S.1., <éh, gb(X, Cl)> — (th+1)x,a

e Elliptical potential lemma (from online learning): If x;, ..., X, € B,(d) and
Yo=ALX <« X | +xx' then

D xlls < +/Tdlog(T7d)
[

1. See [Neu-Pike-Burke-20]
12



Linear RL recap + discussion

® | inear function approximation enables extrapolation: elliptical potential lemma

e Different potential: Eluder dimension [Russo-van Roy 13, Dong-Yang-Ma-21, Li-
Kamath-Foster-Srebro-21]

e Challenge is error amplification in dynamic programming

e Avoided in linear MDPs and with “linear bellman completeness” (more in next part)

® [akeaway: RL is not like SL, much stronger assumptions are necessary

e Open problem: Sample-efficient RL with linear Q™ and poly(d) actions?

e (Open problem: Efficient alg with optimal dimension dependence for linear MDP??

e (Open problem: Efficient alg for linear bellman complete setting”?



Part 3B8: Information heory



Revisiting linear MDPs

Lemma: For any function 7 : & — R, 36, € R? such that
Vr: E ()] = (E L1, a5_1)], 00)

All expectations admit d-dimensional parametrization = only a few distributions!

Natural to define a loss function £ : F X (X X A X X X R) - R and examine

Linear M

&,(f,8) =kl (g, (x,, a5, x;,

P: For any £ of this type, rank(&,) < d

Question: What loss function?

1) | x, ~ TTp, Ay ~ ﬂg] Evaluation function g

Roll-in policy Ty

15



Bellman rank

gh(][; g) L= _thﬂfaahNﬂg[f(g’ (x}p aha xh-|-19 rh))]

Bellman rank (V-version): Choose (g, (x,a,x’,r)) := g(x,a) — r — max g(x’, a’)
a/

Bellman optimality equation: &, (f, Q™) = OVf

Theorem [Jiang-Krishnamurthy-Agarwal-Langford-Schapire-17]:
f Q* € F and max;, rank(&,) < M then can learn € suboptimal policy in

O(M?*AH?comp(F)/e?) samples

16



OLIVE: Algorithm

Optimistic guess for V*
Version space algorithm: repeat

1. Select surviving f € F that maximizes [E| f(xl,ﬂf(xl))]

2. Collect data with 7 = T} and estimate actual value

3. If actual value = guess, terminate and output 7 Achieve optimistic guess

4. Otherwise, eliminate all g € F with &( f g) # 0 at some h

. 0oss minimization

17



OLIVE: Analysis

Claim 1: O™ never eliminated (by bellman equation)

Claim 1 + Optimism: Final policy is near optimal

H
Claim 2: Telescoping performance decomposition E[ f(x;, ﬂf(xl))] — V(sz) = Z &(f,f)
A h=1

o~ f

Claim 3: Iterations < MH

11

Robust” proof using ellipsoid argument




Billnear classes

Ingredients: Function class &', Loss class {£: f € # '}, policies {gst(f) 1 f € # '}

(Unknown) Embedding functions W,, X, : #Z — 7 (a Hilbert space) Sellman rank:
# = Q functions
1. Realizability: /* € 7 induces optimal Q function £;= (W) bellman errors

2. Bellman domination: Tost(r) = Unif()
| "ﬂf[Qf(xha ah) — Iy, — Vf(xh+1)] | < | <Wh(f)aXh(f)> |

3. Loss decomposition:

[£A8, Xy, Ay Xy 15 1) ] | = [ (Wi(8), X,,(f)) |

roltast )

[Du-Kakade-Lee-Lovett-Mahajan-Sun-Wang-21] also see [Jin-Liu-Miryoosefi-21] -



Examples

- Linear bellman complete
_ [ZLKB-20]
Linear mixture MDP

'YW-20,MJTS-20,

Block MDP [DKJADL-19, Low rank/Linear MDP

MHKL-20] JYWJ-20, ... AKKS-20] AJSWY-20

Kfirnelized Nonlinear Regulator
IMJR-20, K LO -20]

‘
‘

O O .

Linear quadratic
control

*
Factored MDP & sta.te Some models with
abstraction

memory: PSR, etc.

Uses model-
based #

Uses f-adapted

oSS 20



Example: Linear bellman complete

Assumption: for any @ exists w such that!]

(70), .

= Elr+max(0, §(x, @) | x,al = (w, (x, @)

e Standard assumption in analysis of dynamic programming algorithmsl2l

® Unclear if LSVI-UC

5 works: misspecification when backing up quadratic bonus

g(ﬂfa Hg) .= _sz[<0g9 ¢(X, CZ)> — = mE}X<9g9 ¢(X,, a,)>]

= —ﬂf[(é’g — W, p(x, a))] = (0, — w,,

o Using Zgst(s) = pavoids dependence on A

e Still a very strong assumption! Can break when adding features

1. [Zanette-Lazaric-Kochenderfer-Brunskill-20]

2. [Antos-Munos-Szepesvari-08]

= [ (x.a)))



Part 3B: Algorthms



Block MDPs

Bellman rank < # of
latent states

Rich observation problem with discrete latent state space
Agent operates on rich observations
Latent states are decodable from observations, so no partial observability

23



Approach: Representation learning + reductions

|[dea: If we knew latent state, could run tabular algorithm

Algorithm: Use function class to “decode” latent state, then run tabular algorithm

Reductions: Assume we can solve optimization problems over function class efficiently

24



Representation learning in Block MDPs

Autoencoding

oooooo

o)

(1]0

Decoding Model <—

State Abstraction Autoenf:oder
. Memorizes a
Model N
T, <+ oisy Bit
¢' ("))
I ( )
v <01
\/ I |
State bit Noisy bits

Reason about MD

P structure uncovered by

Sackward prediction

Contrastive Learning

a; uniform

Roll-in policy

1

Bayes optimal predictor

25



A guarantee

Theorem (informal) [Misra-Henaff-Krishnamurthy-Langford-20]:

If latent states are #-reachable and we have “realizability” can learn policy cover W s.t.,

Vr,s : P[s] < (2S) - P¥[s]
In poly(S, A, H,1/n, comp(F)) samples and in oracle computational model

a; uniform

® Use contrastive learning to learn state representation WW /'\

® “Intrinsic” rewards encourage visiting learned states ol
oll-in policy

® Policy optimization to maximize intrinsic rewards JWWW

X2 a, uniform X

Implementable and effective on hard exploration problems!

26



Representation learning in low rank MDPs

Natural assumption: function class @ containing true -
features @ € P _

Model-based
Stronger: ¢ € O, € Y realizability

Theorem [Agarwal-Kakade-Krishnamurthy-Sun-20]: Can learn model (qg, (1) such that

Vi El(p(x,a), A(-)) = P(- | x,@)llry < €
in poly(d, A, H,1/e,1og | ®|| Y |) samples and in oracle model

® it model using maximum likelihood estimation

® Plan to visit all directions in learned feature map (elliptical bonus + LSVI-UCB)

® Hlliptical potential: coverage in true feature map

27



Other representation learning results

i Wi

Block MDF Low rank MDP
[Du et al., 19, Feng et al., 20, Modi et al., 21]

Foster et al., 20, Wu et al., 21]

0.

s'[1]

z'[u] \

2/[v] \\\
- Yy

S | ~

O O -

Linear quadratic control Factored MDP Exogenous MDP
[Dean-Recht 20, Mhammedi et al., 20] [Misra et al., 20] [Efroni et al., 21]
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Discussion

=L Is not like supervised learning: strong assumptions!

Info theory: Bilinear classes framework Is quite comprehensive

Algorithms: Stronger assumptions than required, worse guarantees

uge theory-practice gap!

Many vibrant sub-topics that we did not cover today!

Many unresolved issues and much work to do. Come join the fun!



