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Function approximation goal

Credit Assignment

Exploration Generalization
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Focus on episodic setting, with horizon  

Given function class , find  sub-optimal policy in  samples

H

ℱ ϵ poly(comp(ℱ), |A | , H,1/ϵ)



Function approximation approaches
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Policy search: Policy class  

• Realizability: optimal policy  

Value-based: Class  of candidate  functions 

• Realizability:  

• Recall: 

 

Model-based: Class  of dynamics models

Π ⊂ {𝒳 → 𝒜}

π⋆ ∈ Π

ℱ ⊂ {𝒳 × 𝒜 → ℝ} Q

Q⋆ ∈ ℱ

Q⋆
h (x, a) = 𝔼[

H

∑
τ=h

rτ ∣ xh = x, ah = a, π⋆] = 𝔼[r + max
a′�

Q⋆
h+1(x′ �, a′ �) ∣ xh = x, ah = a]

ℳ ⊂ {𝒳 × 𝒜 → ℝ × Δ(𝒳)}

Main focus



A key challenge: Distribution shift
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�̂�

𝒟

Theorem [General lower bound]: With finite class  of Q functions that realize , 
 samples are necessary

ℱ Q⋆

Ω(min(AH log |ℱ | , |ℱ | )/ϵ2)

Distribution shift 

• Predicting  accurately on previous data does not directly 
imply a good policy (unlike supervised learning) 

Conceptual solutions 

1. Assume function class supports “extrapolation” 

2. Assume environment only has “a few” distributions

Q⋆

[Kearns-Mansour-Ng-02] [Kakade-03]



Function approximation landscape

5Adapted from Sham Kakade



Part 3A: Linear methods



Most basic question
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Given feature map  such that  
Is  sample complexity possible?

ϕ : 𝒳 × 𝒜 → ℝd Q⋆(x, a) = ⟨θ⋆, ϕ(x, a)⟩
poly(d, H,1/ϵ)

• Yes for supervised learning and bandits 

• Query on basis/spanner, then extrapolate

ϕ(a1)

ϕ(a2)

ϕ(a3)

What about for RL?



Linear RL arms race
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Assumption Setting Notes Reference

Linear Q*, deterministic Online Exploration Constraint propagation Wen-van-Roy-13

Linear Q*, low var., gap Online Exploration Rollout based Du-Luo-Wang-Zhang-19

Linear Q^\pi for all \pi Sample-based planning API + Exp. Design Lat-Sze-Wei-20

Linear Q^\pi for all \pi Batch/offline setting poly(d) actions Wang-Fos-Kak-20

Linear Q* Sample-based planning exp(d) actions Wei-Amo-Sze-20

Linear Q* + gap Sample-based planning Rollout + Exp. Design Du-Kak-Wang-Yang-20

Linear Q* + gap Online Exploration exp(d) actions Wang-Wang-Kak-21

Linear V* Sample-based planning            sample comp. Wei-Amo-Jan-Abb-Jia-
Sze-21(dH)A

Challenge: Error amplification in dynamic programming

Adapted from Gellert Weisz



A linear lower bound
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Theorem [Wang-Wang-Kakade-21]: There exists a class of linearly realizable MDPs (with 
constant gap) s.t. any online RL algorithm requires  samples to obtain a 
near optimal policy.

min(Ω(2d), Ω(2H))

• Extends argument of Weisz-Amortilla-
Szepesvari-20 from the planning setting 

• Idea: exp(d) states and actions with near-
orthogonal features (JL lemma) 

• Fundamentally different from SL and bandits 

• RL indeed requires strong assumptions!

...

...

...



Linear upper bound: Low rank/Linear MDP
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P(x′� ∣ x, a) = ϕ(x, a)

μ(x′�)

Transitions and rewards are linear in feature map ϕ(x, a)

Lemma: For any function ,  such that g : 𝒳 × 𝒜 → ℝ ∃θ ∈ ℝd

⟨θ, ϕ(x, a)⟩ = (𝒯g)x,a

Recall: 
(𝒯g)x,a = 𝔼[max

a′�
g(x′�, a′�) ∣ x, a]



LSVI-UCB
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Algorithm 

• Optimistic dynamic programming 

 

• Define  

• Collect data with greedy policy 

̂θh := arg min
θ ∑ (⟨θ, ϕ(xh, ah)⟩ − rh − max

a′�
Q̂h+1(xh+1, a′�))

2

Q̂h(x, a) = ⟨ ̂θh, ϕ(x, a)⟩ + bonush(x, a)

̂πh(x) = arg max
a

Q̂h(x, a)

Elliptical bonus: 
∥ϕ(x, a)∥Σ−1

h

Theorem [Jin-Yang-Wang-Jordan-19]: In low rank MDP, LSVI-UCB has regret 
  over  episodes with high probability Õ( d3H3N) N



LSVI-UCB: Analysis
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• Similar to UCB-VI [1]: If bonus dominates regression (prediction) error 

• Linear MDP property prevents error amplification (controls regression error) 

• Elliptical potential lemma (from online learning): If  and 
 then 

x1, …, xT ∈ B2(d)
Σ0 = λI, Σt ← Σt−1 + xtx⊤

t

Regret ≲ ∑
t

∑
h

bonush(xt,h, at,h)

∃θ̃h  s.t.,  ⟨θ̃h, ϕ(x, a)⟩ = (𝒯Q̂h+1)x,a

∑
t

∥xt∥Σ−1
t−1

≲ Td log(T/d)

Covering argument 
incurs extra  factord

1. See [Neu-Pike-Burke-20]



Linear RL recap + discussion
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• Linear function approximation enables extrapolation: elliptical potential lemma 

• Different potential: Eluder dimension [Russo-van Roy 13, Dong-Yang-Ma-21, Li-
Kamath-Foster-Srebro-21] 

• Challenge is error amplification in dynamic programming 

• Avoided in linear MDPs and with “linear bellman completeness” (more in next part) 

• Takeaway: RL is not like SL, much stronger assumptions are necessary 

• Open problem: Sample-efficient RL with linear  and  actions? 

• Open problem: Efficient alg with optimal dimension dependence for linear MDP? 

• Open problem: Efficient alg for linear bellman complete setting?

Q⋆ poly(d)



Part 3B: Information Theory



Revisiting linear MDPs
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Lemma: For any function ,  such that ℓ : 𝒳 → ℝ ∃θℓ ∈ ℝd

∀π : 𝔼π[ℓ(xh)] = ⟨𝔼π[ϕ(xh−1, ah−1)], θℓ⟩

All expectations admit -dimensional parametrization  only a few distributions! 

Natural to define a loss function  and examine 

 

Linear MDP: For any  of this type, 

d ⇒

ℓ : ℱ × (𝒳 × 𝒜 × 𝒳 × ℝ) → ℝ

ℰh( f, g) := 𝔼[ℓ(g, (xh, ah, xh+1, rh)) ∣ xh ∼ πf, ah ∼ πg]

ℓ rank(ℰh) ≤ d

P(x′� ∣ x, a) = ϕ(x, a)

μ(x′�)

ℰh( f, g)

Evaluation function g

Ro
ll-

in
 p

ol
icy

 π
f

Question: What loss function? 



Bellman rank
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Bellman rank (V-version): Choose  

Bellman optimality equation: 

ℓ(g, (x, a, x′�, r)) := g(x, a) − r − max
a′ �

g(x′�, a′�)

ℰh( f, Q⋆) = 0∀f

ℰh( f, g) := 𝔼xh∼πf ,ah∼πg
[ℓ(g, (xh, ah, xh+1, rh))]

Theorem [Jiang-Krishnamurthy-Agarwal-Langford-Schapire-17]: 
If  and  then can learn  suboptimal policy in 

 samples

Q⋆ ∈ ℱ maxh rank(ℰh) ≤ M ϵ

Õ(M2AH3comp(ℱ)/ϵ2)



OLIVE: Algorithm
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Version space algorithm: repeat 

1. Select surviving  that maximizes  

2. Collect data with  and estimate actual value 

3. If actual value  guess, terminate and output  

4. Otherwise, eliminate all  with  at some h

̂f ∈ ℱ 𝔼[ f(x1, πf(x1))]

̂π = π ̂f

≈ ̂π

g ∈ ℱ ℰh( ̂f, g) ≠ 0

Optimistic guess for V⋆

Achieve optimistic guess

Loss minimization



Claim 1:  never eliminated (by bellman equation) 

Claim 1 + Optimism: Final policy is near optimal 

Claim 2: Telescoping performance decomposition  

Claim 3: Iterations  

“Robust” proof using ellipsoid argument

Q⋆

𝔼[ f(x1, πf(x1))] − V(πf) =
H

∑
h=1

ℰh( f, f )

≤ MH

OLIVE: Analysis
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Q⋆ ̂f

̂π1

̂π2

 matrixℰh

 survived̂f

 by 2≠ 0



Bilinear classes
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Ingredients: Function class , Loss class , policies  

(Unknown) Embedding functions  (a Hilbert space) 

1. Realizability:  induces optimal Q function 

2. Bellman domination: 

 

3. Loss decomposition: 

ℋ {ℓf : f ∈ ℋ} {πest( f ) : f ∈ ℋ}

Wh, Xh : ℋ → 𝒱

f ⋆ ∈ ℋ

|𝔼πf
[Qf(xh, ah) − rh − Vf(xh+1)] | ≤ |⟨Wh( f ), Xh( f )⟩ |

|𝔼πf∘πest( f )
[ℓf(g, xh, ah, xh+1, rh)] | = |⟨Wh(g), Xh( f )⟩ |

[Du-Kakade-Lee-Lovett-Mahajan-Sun-Wang-21] also see [Jin-Liu-Miryoosefi-21]

Bellman rank: 
 = Q functions 

 = (IW) bellman errors 
ℋ

ℓf
πest( f ) = Unif(𝒜)



Examples

20

=

Linear bellman complete 
[ZLKB-20]

Linear mixture MDP 
[YW-20,MJTS-20, 

AJSWY-20]

Linear Q⋆/V⋆

Kernelized Nonlinear Regulator 
[MJR-20, KKLOS-20]

Block MDP [DKJADL-19, 
MHKL-20]

Low rank/Linear MDP 
[JYWJ-20,…,AKKS-20]

Linear quadratic 
control Factored MDP Some models with 

memory: PSR, etc.
 state 

abstraction
Q⋆

Uses πest( f )

Uses model-
based ℋ

Uses -adapted 
loss
f



Example: Linear bellman complete
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Assumption: for any  exists  such that[1] 

 

• Standard assumption in analysis of dynamic programming algorithms[2] 

• Unclear if LSVI-UCB works: misspecification when backing up quadratic bonus 

 

             

• Using  avoids dependence on  

• Still a very strong assumption! Can break when adding features

θ w

(𝒯θ)x,a := 𝔼[r + max
a′�

⟨θ, ϕ(x′�, a′�)⟩ ∣ x, a] = ⟨w, ϕ(x, a)⟩

ℰ(πf, θg) := 𝔼πf
[⟨θg, ϕ(x, a)⟩ − r − max

a′�
⟨θg, ϕ(x′�, a′�)⟩]

= 𝔼πf
[⟨θg − wg, ϕ(x, a)⟩] = ⟨θg − wg, 𝔼πf

[ϕ(x, a)]⟩

πest( f ) = πf A

1. [Zanette-Lazaric-Kochenderfer-Brunskill-20]

2. [Antos-Munos-Szepesvari-08]



Part 3B: Algorithms



Block MDPs
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Rich observation problem with discrete latent state space 
Agent operates on rich observations 
Latent states are decodable from observations, so no partial observability 

Bellman rank  # of 
latent states

≤



Approach: Representation learning + reductions
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Idea: If we knew latent state, could run tabular algorithm 

Algorithm: Use function class to “decode” latent state, then run tabular algorithm 

Reductions: Assume we can solve optimization problems over function class efficiently



Representation learning in Block MDPs
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x′�x

̂f

̂s
?

Autoencoding Backward prediction Contrastive Learning

Reason about MDP structure uncovered by Bayes optimal predictor



A guarantee
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Theorem (informal) [Misra-Henaff-Krishnamurthy-Langford-20]:  
If latent states are -reachable and we have “realizability” can learn policy cover  s.t., 

 
In  samples and in oracle computational model

η Ψ
∀π, s : Pπ[s] ≤ (2S) ⋅ PΨ[s]

poly(S, A, H,1/η, comp(ℱ))

• Use contrastive learning to learn state representation 

• “Intrinsic” rewards encourage visiting learned states 

• Policy optimization to maximize intrinsic rewards 

Implementable and effective on hard exploration problems!



Representation learning in low rank MDPs
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Natural assumption: function class  containing true 
features  

Stronger: 

Φ
ϕ ∈ Φ

ϕ ∈ Φ, μ ∈ Υ

Theorem [Agarwal-Kakade-Krishnamurthy-Sun-20]: Can learn model  such that 
 

in  samples and in oracle model

( ̂ϕ, ̂μ)
∀π : 𝔼π∥⟨ ̂ϕ(x, a), ̂μ( ⋅ )⟩ − P( ⋅ ∣ x, a)∥TV ≤ ϵ

poly(d, A, H,1/ϵ, log |Φ | |Υ | )

• Fit model using maximum likelihood estimation 

• Plan to visit all directions in learned feature map (elliptical bonus + LSVI-UCB) 

• Elliptical potential: coverage in true feature map

Model-based 
realizability

P(x′� ∣ x, a) = ϕ(x, a)

μ(x′�)



Other representation learning results
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Linear quadratic control  
[Dean-Recht 20, Mhammedi et al., 20]

Factored MDP 
 [Misra et al., 20]

Block MDP 
[Du et al., 19, Feng et al., 20, 
Foster et al., 20, Wu et al., 21]

Low rank MDP 
[Modi et al., 21]

Exogenous MDP 
 [Efroni et al., 21]

P(x′� ∣ x, a) = ϕ(x, a)

μ(x′�)



Discussion
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• RL is not like supervised learning: strong assumptions! 

• Info theory: Bilinear classes framework is quite comprehensive 

• Algorithms: Stronger assumptions than required, worse guarantees 

• Huge theory-practice gap! 

• Many vibrant sub-topics that we did not cover today!

Many unresolved issues and much work to do. Come join the fun!


