
Statistical Foundations of
Reinforcement Learning: I

COLT 2021
 

Akshay Krishnamurthy (MSR, akshaykr@microsoft.com)

Wen Sun (Cornell, ws455@cornell.edu) 

Reinforcement Learning: Motivation and empirical progress

TD Gammon [Tesauro] DeepMind Starcraft [Vinyals et.al]

Stratospheric balloons [Bellemare et.al] OpenAI Dexterous manipulation [Akkaya et.al]

What is reinforcement learning?

Determine action based on state

Learning Agent Environment

What is reinforcement learning?

Determine action based on state

Send reward and next state

Learning Agent Environment

What is reinforcement learning?

Determine action based on state

Multiple Steps

Send reward and next state

Learning Agent Environment

What is reinforcement learning?

Determine action based on state

Multiple Steps

Send reward and next state

Learning Agent Environment

What is reinforcement learning?

Determine action based on state

Multiple Steps

Send reward and next state

Learning Agent Environment

What is reinforcement learning?

Determine action based on state

Multiple Steps

Send reward and next state

Learning Agent Environment

What is reinforcement learning?

Determine action based on state

Multiple Steps

Send reward and next state

Learning Agent Environment

Why is RL hard?

Credit Assignment

Exploration Generalization

4

Why is RL hard?

Credit Assignment

Exploration Generalization

4

Policy search methods;
Structured prediction;
Imitation learning.

R=0.1

Why is RL hard?

Credit Assignment

Exploration Generalization

4

Policy search methods;
Structured prediction;
Imitation learning.

R=0.1

Contextual Bandits

Why is RL hard?

Credit Assignment

Exploration Generalization

4

Tabular RL

Policy search methods;
Structured prediction;
Imitation learning.

R=0.1

Contextual Bandits

Plan for the tutorial

Part 1: Tabular setting

1. Basics and key concepts

2. Policy optimization and Natural Policy Gradient

3. UCB-Value Iteration

Part 2: Problem set

Part 3: Function approximation + Exploration

1. Linear methods and complexity

2. Nonlinear methods, bellman rank, bilinear classes, representation learning

Part 1A: MDP Basics

Markov Decision Processes (Discounted version)

Determine action based on state

Infinitely many steps

Send reward and next state

Learning Agent Environment
policy π(a ∣ s)

r(s, a), s′￼ ∼ P(⋅ ∣ s, a)

ℳ = {S, A, P, r, γ, μ}

P : S × A ↦ Δ(S)
r : S × A → [0,1]
γ ∈ [0,1)

μ ∈ Δ(S)

Markov Decision Processes (Discounted version)

Determine action based on state

Infinitely many steps

Send reward and next state

Learning Agent Environment
policy π(a ∣ s)

r(s, a), s′￼ ∼ P(⋅ ∣ s, a)

ℳ = {S, A, P, r, γ, μ}

P : S × A ↦ Δ(S)
r : S × A → [0,1]
γ ∈ [0,1)

μ ∈ Δ(S)

Objective:

max
π

𝔼 [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, ah ∼ π(. |sh), sh+1 ∼ P(. |sh, ah)]

Average State-action Distributions

Given a policy π : S ↦ Δ(A)

Denote , i.e., probability of hitting at time step dπ
μ,h(s, a) := Pπ ((sh, ah) = (s, a)) π (s, a) h

Average State-action Distributions

Given a policy π : S ↦ Δ(A)

Denote , i.e., probability of hitting at time step dπ
μ,h(s, a) := Pπ ((sh, ah) = (s, a)) π (s, a) h

Denote as the average state-action distribution dπ
μ(s, a) := (1 − γ)

∞

∑
h=0

γhdπ
h (s, a)

Average State-action Distributions

Given a policy π : S ↦ Δ(A)

Denote , i.e., probability of hitting at time step dπ
μ,h(s, a) := Pπ ((sh, ah) = (s, a)) π (s, a) h

Denote as the average state-action distribution dπ
μ(s, a) := (1 − γ)

∞

∑
h=0

γhdπ
h (s, a)

We will abuse notation a bit and denote as the average state-distributiondπ
μ(s) := ∑

a

dπ
μ(s, a)

Value functions and Bellman equations

Value function : total reward when starting in state and following afterwardsVπ(s) s π

Value functions and Bellman equations

Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah ∼ π(sh), sh+1 ∼ P(⋅ |sh, ah)]
Value function : total reward when starting in state and following afterwardsVπ(s) s π

Value functions and Bellman equations

Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah ∼ π(sh), sh+1 ∼ P(⋅ |sh, ah)]
= 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′￼∼P(⋅|s,a)Vπ(s′￼)] (Bellman equation)

Value function : total reward when starting in state and following afterwardsVπ(s) s π

Value functions and Bellman equations

Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah ∼ π(sh), sh+1 ∼ P(⋅ |sh, ah)]
= 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′￼∼P(⋅|s,a)Vπ(s′￼)] (Bellman equation)

Value function : total reward when starting in state and following afterwardsVπ(s) s π

Q function : total reward when starting in state and action and following afterwardsQπ(s, a) s a π

Value functions and Bellman equations

Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah ∼ π(sh), sh+1 ∼ P(⋅ |sh, ah)]
= 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′￼∼P(⋅|s,a)Vπ(s′￼)] (Bellman equation)

Value function : total reward when starting in state and following afterwardsVπ(s) s π

Qπ(s, a) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah ∼ π(sh), sh+1 ∼ P(⋅ |sh, ah)]
Q function : total reward when starting in state and action and following afterwardsQπ(s, a) s a π

Value functions and Bellman equations

Vπ(s) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) s0 = s, ah ∼ π(sh), sh+1 ∼ P(⋅ |sh, ah)]
= 𝔼a∼π(⋅|s) [r(s, a) + γ𝔼s′￼∼P(⋅|s,a)Vπ(s′￼)] (Bellman equation)

= r(s, a) + γ𝔼s′￼∼P(⋅|s,a)Vπ(s′￼) (Bellman equation)

Value function : total reward when starting in state and following afterwardsVπ(s) s π

Qπ(s, a) = 𝔼 [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), ah ∼ π(sh), sh+1 ∼ P(⋅ |sh, ah)]
Q function : total reward when starting in state and action and following afterwardsQπ(s, a) s a π

Optimality

There exists a deterministic stationary policy , s.t.,

π⋆ : S ↦ A
Vπ⋆(s) ≥ Vπ(s), ∀s, π

Optimality

There exists a deterministic stationary policy , s.t.,

π⋆ : S ↦ A
Vπ⋆(s) ≥ Vπ(s), ∀s, π

We denote V⋆ := Vπ⋆, Q⋆ := Qπ⋆

Optimality

There exists a deterministic stationary policy , s.t.,

π⋆ : S ↦ A
Vπ⋆(s) ≥ Vπ(s), ∀s, π

We denote V⋆ := Vπ⋆, Q⋆ := Qπ⋆

∀s, a : Q⋆(s, a) = r(s, a) + γ𝔼s′￼∼P(⋅|s,a) max
a′￼

Q⋆(s′￼, a′￼)

Theorem 1: Bellman Optimality

Optimality

There exists a deterministic stationary policy , s.t.,

π⋆ : S ↦ A
Vπ⋆(s) ≥ Vπ(s), ∀s, π

We denote V⋆ := Vπ⋆, Q⋆ := Qπ⋆

∀s, a : Q⋆(s, a) = r(s, a) + γ𝔼s′￼∼P(⋅|s,a) max
a′￼

Q⋆(s′￼, a′￼)

Theorem 1: Bellman Optimality

Theorem 2: Bellman Optimality

For any , if

for all , then

Q : S × A → ℝ Q(s, a) = r(s, a) + γ𝔼s′￼∼P(⋅|s,a) max
a′￼

Q(s′￼, a′￼)

s, a Q(s, a) = Q⋆(s, a), ∀s, a

Planning in MDP with known transition and reward P r

i.e., how to compute (and /) given the MDP π⋆ V⋆ Q⋆ (P, r)

MDP Planning: Value iteration

Idea: fixed point iteration

Define: Bellman operator

𝒯 : (S × A → ℝ) → (S × A → ℝ)

(𝒯f)s,a := r(s, a) + γ𝔼s′￼∼P(⋅∣s,a)[max
a′￼

f(s′￼, a′￼)]

MDP Planning: Value iteration

Idea: fixed point iteration

Define: Bellman operator

𝒯 : (S × A → ℝ) → (S × A → ℝ)

(𝒯f)s,a := r(s, a) + γ𝔼s′￼∼P(⋅∣s,a)[max
a′￼

f(s′￼, a′￼)]

VI Algorithm: Initialize

Iterate

Q(0)s . t . , Q(0)(s, a) ∈ [0,1/(1 − γ))

Q(t+1) ← 𝒯Q(t)

MDP Planning: Value iteration

Idea: fixed point iteration

Define: Bellman operator

𝒯 : (S × A → ℝ) → (S × A → ℝ)

(𝒯f)s,a := r(s, a) + γ𝔼s′￼∼P(⋅∣s,a)[max
a′￼

f(s′￼, a′￼)]

Theorem: Induced policy satisfiesπ(t) : s ↦ arg max
a

Q(t)(s, a)

Vπ(t)(s) ≥ V⋆(s) −
2γt

1 − γ
∥Q(0) − Q⋆∥∞ ∀s ∈ S

VI Algorithm: Initialize

Iterate

Q(0)s . t . , Q(0)(s, a) ∈ [0,1/(1 − γ))

Q(t+1) ← 𝒯Q(t)

MDP Planning: Value iteration

Idea: fixed point iteration

Define: Bellman operator

𝒯 : (S × A → ℝ) → (S × A → ℝ)

(𝒯f)s,a := r(s, a) + γ𝔼s′￼∼P(⋅∣s,a)[max
a′￼

f(s′￼, a′￼)]

Theorem: Induced policy satisfiesπ(t) : s ↦ arg max
a

Q(t)(s, a)

Vπ(t)(s) ≥ V⋆(s) −
2γt

1 − γ
∥Q(0) − Q⋆∥∞ ∀s ∈ S

Contraction lemma

∥𝒯Q − 𝒯Q′￼∥∞ ≤ γ∥Q − Q′￼∥∞

VI Algorithm: Initialize

Iterate

Q(0)s . t . , Q(0)(s, a) ∈ [0,1/(1 − γ))

Q(t+1) ← 𝒯Q(t)

MDP Planning: Policy iteration

Idea: Alternate between policy evaluation and policy improvement

Initialize

Repeat:

• Compute (evaluation)

• Update (improvement)

π(0) : S → A

Qπ(t)

π(t+1) : π(t+1)(s) = arg max
a

Qπ(t)(s, a)

MDP Planning: Policy iteration

Idea: Alternate between policy evaluation and policy improvement

Initialize

Repeat:

• Compute (evaluation)

• Update (improvement)

π(0) : S → A

Qπ(t)

π(t+1) : π(t+1)(s) = arg max
a

Qπ(t)(s, a)

Linear system solve

MDP Planning: Policy iteration

Idea: Alternate between policy evaluation and policy improvement

Initialize

Repeat:

• Compute (evaluation)

• Update (improvement)

π(0) : S → A

Qπ(t)

π(t+1) : π(t+1)(s) = arg max
a

Qπ(t)(s, a)

Linear system solve

Theorem: Geometric convergence:

∥Vπ(t+1) − V⋆∥∞ ≤ γ∥Vπ(t) − V⋆∥∞

Finite Horizon MDPs

ℳ = {S, A, P, r, μ, H}

P : S × A ↦ Δ(S), r : S × A → [0,1], H ∈ ℕ+, μ ∈ Δ(S)

time-dependent policies: π⋆ := {π⋆
0 , …, π⋆

H−1}

time-dependent V/Q functions: {V⋆
h }H−1

h=0 , {Q⋆
h }H−1

h=0

Finite Horizon MDPs

ℳ = {S, A, P, r, μ, H}

P : S × A ↦ Δ(S), r : S × A → [0,1], H ∈ ℕ+, μ ∈ Δ(S)

Episode:

For

• Take action

• Collect reward

• Transition

s0 ∼ μ
h = 0,…, H − 1 :

ah
r(sh, ah)

sh+1 ∼ P(⋅ ∣ sh, ah)
time-dependent policies: π⋆ := {π⋆

0 , …, π⋆
H−1}

time-dependent V/Q functions: {V⋆
h }H−1

h=0 , {Q⋆
h }H−1

h=0

Finite Horizon MDPs

ℳ = {S, A, P, r, μ, H}

P : S × A ↦ Δ(S), r : S × A → [0,1], H ∈ ℕ+, μ ∈ Δ(S)

Episode:

For

• Take action

• Collect reward

• Transition

s0 ∼ μ
h = 0,…, H − 1 :

ah
r(sh, ah)

sh+1 ∼ P(⋅ ∣ sh, ah)

Objective function: V(π) = 𝔼 [
H−1

∑
h=0

r(sh, ah)]
time-dependent policies: π⋆ := {π⋆

0 , …, π⋆
H−1}

time-dependent V/Q functions: {V⋆
h }H−1

h=0 , {Q⋆
h }H−1

h=0

Summary so far:

MDP definitions (discounted infinite horizon & finite horizon);

State-action distributions, value and Q functions, and two planning algorithms

Part 1B: Policy Gradient &
Natural Policy Gradient

Policy Optimization Motivation: Practical

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18] [OpenAI,19]

Policy Optimization Motivation: Simple

Vπθ = 𝔼πθ [
∞

∑
h=0

γhrh]
θt+1 = θt + η∇θVπθ |θ=θt

πθ(a |s) := π(a |s; θ)

Policy Optimization Motivation: Simple

Vπθ = 𝔼πθ [
∞

∑
h=0

γhrh]
θt+1 = θt + η∇θVπθ |θ=θt

πθ(a |s) := π(a |s; θ)

We can have a closed-form expression for PG:

∇θVπθ =
1

1 − γ
𝔼s,a∼dπθ

μ [∇θln πθ(a |s)Aπθ(s, a)]
Define advantage function , we have:Aπθ(s, a) := Qπθ(s, a) − Vπθ(s)

Policy Gradient Theorem [Sutton, McAllester, Singh, Mansour]:

Policy Optimization Motivation: Simple

Vπθ = 𝔼πθ [
∞

∑
h=0

γhrh]
θt+1 = θt + η∇θVπθ |θ=θt

πθ(a |s) := π(a |s; θ)

Adjust the probability proportional to πθ(a |s) Aπθ(s, a) := Qπθ(s, a) − Vπθ(s)

We can have a closed-form expression for PG:

∇θVπθ =
1

1 − γ
𝔼s,a∼dπθ

μ [∇θln πθ(a |s)Aπθ(s, a)]
Define advantage function , we have:Aπθ(s, a) := Qπθ(s, a) − Vπθ(s)

Policy Gradient Theorem [Sutton, McAllester, Singh, Mansour]:

Global optimality of Policy Gradient methods

Consider tabular MDPs, with πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)
, θs,a ∈ ℝ

Global optimality of Policy Gradient methods

Consider tabular MDPs, with πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)
, θs,a ∈ ℝ

PG formulation:
∂V(θ)
∂θs,a

=
1

1 − γ
dπ

μ(s)πθ(a |s)Aπθ(s, a), where Aπθ(s, a) = Qπθ(s, a) − Vπθ(s)

Global optimality of Policy Gradient methods

Consider tabular MDPs, with πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)
, θs,a ∈ ℝ

PG formulation:
∂V(θ)
∂θs,a

=
1

1 − γ
dπ

μ(s)πθ(a |s)Aπθ(s, a), where Aπθ(s, a) = Qπθ(s, a) − Vπθ(s)

Despite being non-concave, we have global convergence:

Global optimality of Policy Gradient methods

Consider tabular MDPs, with πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)
, θs,a ∈ ℝ

PG formulation:
∂V(θ)
∂θs,a

=
1

1 − γ
dπ

μ(s)πθ(a |s)Aπθ(s, a), where Aπθ(s, a) = Qπθ(s, a) − Vπθ(s)

Despite being non-concave, we have global convergence:

Theorem (Informal) [Agarwal, Kakade, Lee, Mahajan 20; Mei, Xiao, Szepesvari, Schuurmans 20]:

Assume the PG algorithm converges to
global optimality

μ(s) > 0,∀s, θt+1 := θt + η∇θV(θ) |θ=θt

Policy optimization: Natural Policy Gradient
[Kakade 03]

Policy optimization: Natural Policy Gradient

Define Fisher information matrix

Fθ = 𝔼s,a∼dπθ [∇θln πθ(a |s)(∇θln πθ(a |s))⊤] ∈ ℝdθ×dθ

[Kakade 03]

Policy optimization: Natural Policy Gradient

Define Fisher information matrix

Fθ = 𝔼s,a∼dπθ [∇θln πθ(a |s)(∇θln πθ(a |s))⊤] ∈ ℝdθ×dθ

Natural policy gradient uses to pre-condition PG:Fθ

θt+1 := θt + ηF−1
θt ∇θV(θ) |θ=θt

[Kakade 03]

Policy optimization: Natural Policy Gradient

Define Fisher information matrix

Fθ = 𝔼s,a∼dπθ [∇θln πθ(a |s)(∇θln πθ(a |s))⊤] ∈ ℝdθ×dθ

Natural policy gradient uses to pre-condition PG:Fθ

θt+1 := θt + ηF−1
θt ∇θV(θ) |θ=θt

(For simplicity, assume is full rank —- otherwise use pseudo inverse)Fθ

[Kakade 03]

NPG as a Trust-region optimization procedure:

max
θ

⟨θ, ∇θV(θ) |θ=θt ⟩, s.t., KL (ρθt | |ρθ) ≤ δ

The trust region optimization interpretation of NPG

(ρθ(τ) := μ(s0)∏
h

π(ah |sh)P(sh+1 |sh, ah))

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

max
θ

⟨θ, ∇θV(θ) |θ=θt ⟩, s.t., KL (ρθt | |ρθ) ≤ δ

i.e., optimize the linearized objective s.t. a KL constraint forcing new policy’s
trajectory distribution staying close to old one’s

The trust region optimization interpretation of NPG

(ρθ(τ) := μ(s0)∏
h

π(ah |sh)P(sh+1 |sh, ah))

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

max
θ

⟨θ, ∇θV(θ) |θ=θt ⟩, s.t., KL (ρθt | |ρθ) ≤ δ

i.e., optimize the linearized objective s.t. a KL constraint forcing new policy’s
trajectory distribution staying close to old one’s

Further perform second-order Taylor expansion on at :KL (ρθt | |ρθ) θt

The trust region optimization interpretation of NPG

(ρθ(τ) := μ(s0)∏
h

π(ah |sh)P(sh+1 |sh, ah))

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

max
θ

⟨θ, ∇θV(θ) |θ=θt ⟩, s.t., KL (ρθt | |ρθ) ≤ δ

i.e., optimize the linearized objective s.t. a KL constraint forcing new policy’s
trajectory distribution staying close to old one’s

Further perform second-order Taylor expansion on at :KL (ρθt | |ρθ) θt

KL (ρθt | |ρθ) ≈ (θ − θt)⊤Fθt(θ − θt)

The trust region optimization interpretation of NPG

(ρθ(τ) := μ(s0)∏
h

π(ah |sh)P(sh+1 |sh, ah))

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

max
θ

⟨θ, ∇θV(θ) |θ=θt ⟩, s.t., KL (ρθt | |ρθ) ≤ δ

i.e., optimize the linearized objective s.t. a KL constraint forcing new policy’s
trajectory distribution staying close to old one’s

Further perform second-order Taylor expansion on at :KL (ρθt | |ρθ) θt

KL (ρθt | |ρθ) ≈ (θ − θt)⊤Fθt(θ − θt)

NPG then is revealed by solving the convex program:

max
θ

⟨θ, ∇θV(θ) |θ=θt ⟩, s.t., (θ − θt)⊤Fθt(θ − θt) ≤ δ

The trust region optimization interpretation of NPG

(ρθ(τ) := μ(s0)∏
h

π(ah |sh)P(sh+1 |sh, ah))

[Bagnell & Schneider 03]

Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

θs,a ∈ ℝ, ∀s, a ∈ S × A πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)

Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

θs,a ∈ ℝ, ∀s, a ∈ S × A πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)

We can show that the NPG update is
equivalent to (see the exercise in recitation):

θt+1 := θt + ηF−1
θt ∇θV(θt)

Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

θs,a ∈ ℝ, ∀s, a ∈ S × A πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)

We can show that the NPG update is
equivalent to (see the exercise in recitation):

θt+1 := θt + ηF−1
θt ∇θV(θt)

πt+1(a |s) ∝ πt(a |s) ⋅ exp (ηAπt(s, a))(πt := πθt)

Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

θs,a ∈ ℝ, ∀s, a ∈ S × A πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)

We can show that the NPG update is
equivalent to (see the exercise in recitation):

θt+1 := θt + ηF−1
θt ∇θV(θt)

Proof sketch: (see recitation for details)Aπθt(⋅ , ⋅) ∝ arg min
x

∥∇θV(θt) − Fθtx∥2
2

πt+1(a |s) ∝ πt(a |s) ⋅ exp (ηAπt(s, a))(πt := πθt)

Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

θs,a ∈ ℝ, ∀s, a ∈ S × A πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)

We can show that the NPG update is
equivalent to (see the exercise in recitation):

θt+1 := θt + ηF−1
θt ∇θV(θt)

Interpretation: for each state , NPG runs online mirror ascent with as the
reward vector at iter t

s Aπt(s, ⋅) ∈ ℝ|A|

Proof sketch: (see recitation for details)Aπθt(⋅ , ⋅) ∝ arg min
x

∥∇θV(θt) − Fθtx∥2
2

πt+1(a |s) ∝ πt(a |s) ⋅ exp (ηAπt(s, a))(πt := πθt)

Global Convergence of the exact Natural policy gradient

πt+1(a |s) ∝ πt(a |s) ⋅ exp (ηAπt(s, a))
(Note here we are studying the idealized case where we have exact .

We will look into learning/approximation in the recitation)
Aπt(⋅ , ⋅)

Global Convergence of the exact Natural policy gradient

πt+1(a |s) ∝ πt(a |s) ⋅ exp (ηAπt(s, a))
(Note here we are studying the idealized case where we have exact .

We will look into learning/approximation in the recitation)
Aπt(⋅ , ⋅)

Theorem [Agarwal, Kakade, Lee, Mahajan 20]: Initialize . After T
iterations, there exits a policy s.t.,

π0(⋅ |s) = Unif(A)
π ∈ {π0, …, πT−1},

Vπ ≥ V⋆ −
log A

ηT
−

1
(1 − γ)2T

.

Global Convergence of the exact Natural policy gradient

πt+1(a |s) ∝ πt(a |s) ⋅ exp (ηAπt(s, a))
(Note here we are studying the idealized case where we have exact .

We will look into learning/approximation in the recitation)
Aπt(⋅ , ⋅)

Theorem [Agarwal, Kakade, Lee, Mahajan 20]: Initialize . After T
iterations, there exits a policy s.t.,

π0(⋅ |s) = Unif(A)
π ∈ {π0, …, πT−1},

Vπ ≥ V⋆ −
log A

ηT
−

1
(1 − γ)2T

.

• Global optimality despite non-concavity in the objective

• No dependence at all; log-dependence on

• No coverage requirement on the initial distribution

|S | |A |

μ

Proof Sketch for NPG’s global optimality (a rate)1/ T

Proof Sketch for NPG’s global optimality (a rate)1/ T

1. Since we run Mirror Ascent per state, we have that for all :s ∈ S

Proof Sketch for NPG’s global optimality (a rate)1/ T

1. Since we run Mirror Ascent per state, we have that for all :s ∈ S

T−1

∑
t=0

⟨π⋆(⋅ |s), Aπt(s, ⋅)⟩ − ⟨πt(⋅ |s), Aπt(s, ⋅)⟩

=0

regret of mirror ascent on s

≲ ln(|A |)T .

Proof Sketch for NPG’s global optimality (a rate)1/ T

1. Since we run Mirror Ascent per state, we have that for all :s ∈ S

T−1

∑
t=0

⟨π⋆(⋅ |s), Aπt(s, ⋅)⟩ − ⟨πt(⋅ |s), Aπt(s, ⋅)⟩

=0

regret of mirror ascent on s

≲ ln(|A |)T .

2. Add on both sides, and via performance difference lemma [Kakade & Langford 2003]:𝔼s∼dπ⋆
μ

T−1

∑
t=0

Vπ⋆ − Vπt ∝
T−1

∑
t=0

𝔼s∼dπ⋆
μ [𝔼a∼π⋆(⋅|s)Aπt(s, a)] ≲ ln(|A |)T .

Proof Sketch for NPG’s global optimality (a rate)1/ T

1. Since we run Mirror Ascent per state, we have that for all :s ∈ S

T−1

∑
t=0

⟨π⋆(⋅ |s), Aπt(s, ⋅)⟩ − ⟨πt(⋅ |s), Aπt(s, ⋅)⟩

=0

regret of mirror ascent on s

≲ ln(|A |)T .

2. Add on both sides, and via performance difference lemma [Kakade & Langford 2003]:𝔼s∼dπ⋆
μ

T−1

∑
t=0

Vπ⋆ − Vπt ∝
T−1

∑
t=0

𝔼s∼dπ⋆
μ [𝔼a∼π⋆(⋅|s)Aπt(s, a)] ≲ ln(|A |)T .

 (see the exercise in recitation for a detailed proof with approximation on ,

and see chapter 10 in AJKS monograph for the proof for rate)

Qπt

1/T

Summary so far:

Policy Gradient and NPG:

Global Convergence vanilla PG and NPG in tabular MDPs with softmax parameterization

NPG w/ approximation in Recitation

Part 1C: Exploration in tabular
MDP w/ UCB-Value Iteration

In this part:

Question: how to explore efficient if we do not know (P, r)

We need to perform efficient exploration when learning:

The combination lock problem:

R=0.1

R=0.1

R=1s0

a1

a2

a3

Initial state

We need to perform efficient exploration when learning:

The combination lock problem:

R=0.1

R=0.1

R=1s0

a1

a2

a3

The prob of a random walk reaching the goal is exponentially small wrt H

Initial state

We need to perform efficient exploration when learning:

The combination lock problem:

R=0.1

R=0.1

R=1s0

a1

a2

a3

The prob of a random walk reaching the goal is exponentially small wrt H

The principle behind UCB-VI: Optimism in the face of uncertainty

Initial state

Problem setup, learning protocol, and goal

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s0

learning protocol:

Goal:

transitions unknown, but reward known{Ph}H−1
h=0 r(s, a)

Problem setup, learning protocol, and goal

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s0

1. Learner initializes a policy π0

learning protocol:

Goal:

transitions unknown, but reward known{Ph}H−1
h=0 r(s, a)

Problem setup, learning protocol, and goal

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s0

1. Learner initializes a policy π0

2. At episode n, learner executes to draw a trajectory starting at : πn s0
{sn

h , an
h , rn

h}H−1
h=0 , with an

h = πn(sn
h), rn

h = r(sn
h , an

h), sn
h+1 ∼ P(⋅ |sn

h , an
h)

learning protocol:

Goal:

transitions unknown, but reward known{Ph}H−1
h=0 r(s, a)

Problem setup, learning protocol, and goal

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s0

1. Learner initializes a policy π0

2. At episode n, learner executes to draw a trajectory starting at : πn s0
{sn

h , an
h , rn

h}H−1
h=0 , with an

h = πn(sn
h), rn

h = r(sn
h , an

h), sn
h+1 ∼ P(⋅ |sn

h , an
h)

3. Learner updates policy to using all prior informationπn+1

learning protocol:

Goal:

transitions unknown, but reward known{Ph}H−1
h=0 r(s, a)

Problem setup, learning protocol, and goal

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s0

1. Learner initializes a policy π0

2. At episode n, learner executes to draw a trajectory starting at : πn s0
{sn

h , an
h , rn

h}H−1
h=0 , with an

h = πn(sn
h), rn

h = r(sn
h , an

h), sn
h+1 ∼ P(⋅ |sn

h , an
h)

3. Learner updates policy to using all prior informationπn+1

Sub-linear regret:

𝔼 [
N

∑
n=1

(V⋆ − Vπn)] = poly(S, A, H) N

learning protocol:

Goal:

transitions unknown, but reward known{Ph}H−1
h=0 r(s, a)

UCBVI: Optimistic Model-based Learning

Inside iteration n :

UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions ̂P n
0, …, ̂P n

H−1

UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions ̂P n
0, …, ̂P n

H−1

Design reward bonus bn
h(s, a), ∀s, a, h

UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions ̂P n
0, …, ̂P n

H−1

Optimistic planning with learned model: πn = Value-Iter ({ ̂P n
h, rh + bn

h}H−1
h=1)

Design reward bonus bn
h(s, a), ∀s, a, h

UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions ̂P n
0, …, ̂P n

H−1

Optimistic planning with learned model: πn = Value-Iter ({ ̂P n
h, rh + bn

h}H−1
h=1)

Collect a new trajectory by executing in the real world starting from πn {Ph}H−1
h=0 s0

Design reward bonus bn
h(s, a), ∀s, a, h

UCBVI—Part 1: Model Estimation

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

UCBVI—Part 1: Model Estimation

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

UCBVI—Part 1: Model Estimation

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h, Nn
h(s, a, s′￼) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′￼)}, ∀s, a, h

UCBVI—Part 1: Model Estimation

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h, Nn
h(s, a, s′￼) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′￼)}, ∀s, a, h

Estimate model (i.e., MLE):̂P n
h(s′￼|s, a), ∀s, a, s′￼, h

̂P n
h(s′￼|s, a) =

Nn
h(s, a, s′￼)
Nn

h(s, a)

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}, ∀s, a

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s ̂V n

h ∞
≤ H, ∀h, n

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

UCBVI: Put All Together

For n = 1 → N :

3. Estimate ̂P n : ̂P n
h(s′￼|s, a) =

Nn
h(s, a, s′￼)
Nn

h(s, a)
, ∀s, a, s′￼, h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′￼) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′￼)}, ∀s, a, a′￼, h

4. Plan: πn = VI ({ ̂P n
h, rh + bn

h}h), with bn
h(s, a) = cH

ln(SAHN/δ)
Nn

h(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

Theorem: UCBVI Regret Bound

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 S2AN)

We will prove the following in the recitation:

Theorem: UCBVI Regret Bound

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 S2AN)

Note that we consider expected regret here (policy is a random quantity).

High probability version is not hard to get (need to do a martingale argument)

πn

Remarks:

We will prove the following in the recitation:

Theorem: UCBVI Regret Bound

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 S2AN)

Dependency on H and S are suboptimal; but the same algorithm can achieve in the
leading term [Azar et.al 17 ICML]

H2 SAN

Note that we consider expected regret here (policy is a random quantity).

High probability version is not hard to get (need to do a martingale argument)

πn

Remarks:

We will prove the following in the recitation:

Key Intuition behind the theorem:

VI at episode n under and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

Key Intuition behind the theorem:

VI at episode n under and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

Key lemma 1: optimism — our bonus is large enough s.t. ̂V n
h(s) ≥ V⋆

h (s), ∀s, h

Key Intuition behind the theorem:

VI at episode n under and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

Key lemma 1: optimism — our bonus is large enough s.t. ̂V n
h(s) ≥ V⋆

h (s), ∀s, h

Key lemma 2: regret decomposition:

Regret at iter n = V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

Key Intuition behind the theorem:

VI at episode n under and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

Key lemma 1: optimism — our bonus is large enough s.t. ̂V n
h(s) ≥ V⋆

h (s), ∀s, h

Key lemma 2: regret decomposition:

Regret at iter n = V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

≤ ∑
h

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − P⋆

h (⋅ |s, a))⊤ ̂V n
h+1]

Key Intuition behind the theorem:

VI at episode n under and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

Key lemma 1: optimism — our bonus is large enough s.t. ̂V n
h(s) ≥ V⋆

h (s), ∀s, h

Key lemma 2: regret decomposition:

Regret at iter n = V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

≤ ∑
h

𝔼s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − P⋆

h (⋅ |s, a))⊤ ̂V n
h+1]

If is suboptimal, i.e., is large, then must visit some
pairs with large bonus or wrong

πn V⋆(s0) − Vπn(s0) πn (s, a)
b(s, a) ̂P (⋅ |s, a)

Summary

1. Basics of MDPs:

Bellman Equation / Optimality; two planning algs: Value Iteration and
Policy Iteration

2. Policy Gradient:

Vanilla PG formulation & Natural Policy Gradient with their global convergence

3. Efficient exploration in tabular MDPs:

The UCB-VI algorithm via the principle of optimism in the face of uncertainty

