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Reinforcement Learning: Motivation and empirical progress

TD Gammon [Tesauro ] DeepMind Starcraft [Vinyals et.al] 

Stratospheric balloons [Bellemare et.al] OpenAI Dexterous manipulation [Akkaya et.al]
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Why is RL hard?

Credit Assignment

Exploration Generalization

4

Tabular RL

Policy search methods; 
Structured prediction; 
Imitation learning.

R=0.1

Contextual Bandits



Plan for the tutorial

Part 1: Tabular setting 

1. Basics and key concepts


2. Policy optimization and Natural Policy Gradient


3. UCB-Value Iteration


Part 2: Problem set 

Part 3: Function approximation + Exploration 

1. Linear methods and complexity


2. Nonlinear methods, bellman rank, bilinear classes, representation learning



Part 1A: MDP Basics



Markov Decision Processes (Discounted version)

Determine action based on state

Infinitely many steps

Send reward and next state

Learning Agent Environment
policy π(a ∣ s)

r(s, a), s′￼ ∼ P( ⋅ ∣ s, a)

ℳ = {S, A, P, r, γ, μ}

P : S × A ↦ Δ(S)
r : S × A → [0,1]
γ ∈ [0,1)

μ ∈ Δ(S)



Markov Decision Processes (Discounted version)

Determine action based on state

Infinitely many steps

Send reward and next state

Learning Agent Environment
policy π(a ∣ s)

r(s, a), s′￼ ∼ P( ⋅ ∣ s, a)

ℳ = {S, A, P, r, γ, μ}

P : S × A ↦ Δ(S)
r : S × A → [0,1]
γ ∈ [0,1)

μ ∈ Δ(S)

Objective:

max
π

𝔼 [
∞

∑
h=0

γhr(sh, ah) |s0 ∼ μ, ah ∼ π( . |sh), sh+1 ∼ P( . |sh, ah)]
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Average State-action Distributions

Given a policy π : S ↦ Δ(A)

Denote , i.e., probability of  hitting  at time step   dπ
μ,h(s, a) := Pπ ((sh, ah) = (s, a)) π (s, a) h

Denote  as the average state-action distribution dπ
μ(s, a) := (1 − γ)

∞

∑
h=0

γhdπ
h (s, a)

We will abuse notation a bit and denote  as the average state-distributiondπ
μ(s) := ∑

a

dπ
μ(s, a)
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π⋆ : S ↦ A
Vπ⋆(s) ≥ Vπ(s), ∀s, π

We denote V⋆ := Vπ⋆, Q⋆ := Qπ⋆

∀s, a : Q⋆(s, a) = r(s, a) + γ𝔼s′￼∼P(⋅|s,a) max
a′￼

Q⋆(s′￼, a′￼)

Theorem 1: Bellman Optimality

Theorem 2: Bellman Optimality

For any , if  

for all , then 

Q : S × A → ℝ Q(s, a) = r(s, a) + γ𝔼s′￼∼P(⋅|s,a) max
a′￼

Q(s′￼, a′￼)

s, a Q(s, a) = Q⋆(s, a), ∀s, a



Planning in MDP with known transition  and reward P r

i.e., how to compute  (and  / ) given the MDP π⋆ V⋆ Q⋆ (P, r)
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(𝒯f )s,a := r(s, a) + γ𝔼s′￼∼P(⋅∣s,a)[max
a′￼

f(s′￼, a′￼)]

Theorem: Induced policy  satisfiesπ(t) : s ↦ arg max
a

Q(t)(s, a)

Vπ(t)(s) ≥ V⋆(s) −
2γt

1 − γ
∥Q(0) − Q⋆∥∞ ∀s ∈ S

Contraction lemma

∥𝒯Q − 𝒯Q′￼∥∞ ≤ γ∥Q − Q′￼∥∞

VI Algorithm: Initialize 


Iterate 

Q(0)s . t . , Q(0)(s, a) ∈ [0,1/(1 − γ))

Q(t+1) ← 𝒯Q(t)
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MDP Planning: Policy iteration

Idea: Alternate between policy evaluation and policy improvement


Initialize 


Repeat:


• Compute  (evaluation)


• Update  (improvement)

π(0) : S → A

Qπ(t)

π(t+1) : π(t+1)(s) = arg max
a

Qπ(t)(s, a)

Linear system solve

Theorem: Geometric convergence: 


∥Vπ(t+1) − V⋆∥∞ ≤ γ∥Vπ(t) − V⋆∥∞



Finite Horizon MDPs

ℳ = {S, A, P, r, μ, H}
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time-dependent policies: π⋆ := {π⋆
0 , …, π⋆

H−1}

time-dependent V/Q functions: {V⋆
h }H−1

h=0 , {Q⋆
h }H−1

h=0



Finite Horizon MDPs

ℳ = {S, A, P, r, μ, H}

P : S × A ↦ Δ(S), r : S × A → [0,1], H ∈ ℕ+, μ ∈ Δ(S)

Episode: 



For 

• Take action 

• Collect reward 

• Transition 

s0 ∼ μ
h = 0,…, H − 1 :

ah
r(sh, ah)

sh+1 ∼ P( ⋅ ∣ sh, ah)
time-dependent policies: π⋆ := {π⋆

0 , …, π⋆
H−1}

time-dependent V/Q functions: {V⋆
h }H−1

h=0 , {Q⋆
h }H−1

h=0



Finite Horizon MDPs

ℳ = {S, A, P, r, μ, H}

P : S × A ↦ Δ(S), r : S × A → [0,1], H ∈ ℕ+, μ ∈ Δ(S)

Episode: 



For 

• Take action 

• Collect reward 

• Transition 

s0 ∼ μ
h = 0,…, H − 1 :

ah
r(sh, ah)

sh+1 ∼ P( ⋅ ∣ sh, ah)

Objective function: V(π) = 𝔼 [
H−1

∑
h=0

r(sh, ah)]
time-dependent policies: π⋆ := {π⋆

0 , …, π⋆
H−1}

time-dependent V/Q functions: {V⋆
h }H−1

h=0 , {Q⋆
h }H−1

h=0



Summary so far:

MDP definitions (discounted infinite horizon & finite horizon);


State-action distributions, value and Q functions, and two planning algorithms



Part 1B: Policy Gradient & 
Natural Policy Gradient



Policy Optimization Motivation: Practical

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18] [OpenAI,19]
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Vπθ = 𝔼πθ [
∞

∑
h=0

γhrh]
θt+1 = θt + η∇θVπθ |θ=θt

πθ(a |s) := π(a |s; θ)

Adjust the probability  proportional to πθ(a |s) Aπθ(s, a) := Qπθ(s, a) − Vπθ(s)

We can have a closed-form expression for PG:
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Consider tabular MDPs, with πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)
, θs,a ∈ ℝ

PG formulation:
∂V(θ)
∂θs,a

=
1

1 − γ
dπ

μ(s)πθ(a |s)Aπθ(s, a), where Aπθ(s, a) = Qπθ(s, a) − Vπθ(s)

Despite being non-concave, we have global convergence: 

Theorem (Informal) [Agarwal, Kakade, Lee, Mahajan 20; Mei, Xiao, Szepesvari, Schuurmans 20 ]: 


Assume  the PG algorithm  converges to 
global optimality

μ(s) > 0,∀s, θt+1 := θt + η∇θV(θ) |θ=θt



Policy optimization: Natural Policy Gradient
[Kakade 03]
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Policy optimization: Natural Policy Gradient

Define Fisher information matrix

Fθ = 𝔼s,a∼dπθ [∇θln πθ(a |s)(∇θln πθ(a |s))⊤] ∈ ℝdθ×dθ

Natural policy gradient uses  to pre-condition PG:Fθ

θt+1 := θt + ηF−1
θt ∇θV(θ) |θ=θt

(For simplicity, assume  is full rank —- otherwise use pseudo inverse)Fθ

[Kakade 03]
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⟨θ, ∇θV(θ) |θ=θt ⟩,  s.t., KL (ρθt | |ρθ) ≤ δ

i.e., optimize the linearized objective s.t. a KL constraint forcing new policy’s 
trajectory distribution staying close to old one’s

Further perform second-order Taylor expansion on  at :KL (ρθt | |ρθ) θt

KL (ρθt | |ρθ) ≈ (θ − θt)⊤Fθt(θ − θt)

NPG then is revealed by solving the convex program:

max
θ

⟨θ, ∇θV(θ) |θ=θt ⟩,  s.t., (θ − θt)⊤Fθt(θ − θt) ≤ δ

The trust region optimization interpretation of NPG

(ρθ(τ) := μ(s0)∏
h

π(ah |sh)P(sh+1 |sh, ah))

[Bagnell & Schneider 03]
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Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

θs,a ∈ ℝ, ∀s, a ∈ S × A πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)

We can show that the NPG update  is 
equivalent to (see the exercise in recitation):

θt+1 := θt + ηF−1
θt ∇θV(θt)

Proof sketch:     (see recitation for details)Aπθt( ⋅ , ⋅ ) ∝ arg min
x

∥∇θV(θt) − Fθtx∥2
2

πt+1(a |s) ∝ πt(a |s) ⋅ exp (ηAπt(s, a))(πt := πθt)



Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

θs,a ∈ ℝ, ∀s, a ∈ S × A πθ(a |s) =
exp(θs,a)

∑a′￼
exp(θs,a′￼

)

We can show that the NPG update  is 
equivalent to (see the exercise in recitation):

θt+1 := θt + ηF−1
θt ∇θV(θt)

Interpretation: for each state , NPG runs online mirror ascent with  as the 
reward vector at iter t

s Aπt(s, ⋅ ) ∈ ℝ|A|

Proof sketch:     (see recitation for details)Aπθt( ⋅ , ⋅ ) ∝ arg min
x

∥∇θV(θt) − Fθtx∥2
2

πt+1(a |s) ∝ πt(a |s) ⋅ exp (ηAπt(s, a))(πt := πθt)



Global Convergence of the exact Natural policy gradient

πt+1(a |s) ∝ πt(a |s) ⋅ exp (ηAπt(s, a))
(Note here we are studying the idealized case where we have exact . 
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Global Convergence of the exact Natural policy gradient

πt+1(a |s) ∝ πt(a |s) ⋅ exp (ηAπt(s, a))
(Note here we are studying the idealized case where we have exact . 

We will look into learning/approximation in the recitation)
Aπt( ⋅ , ⋅ )

Theorem [Agarwal, Kakade, Lee, Mahajan 20]: Initialize . After T 
iterations, there exits a policy s.t., 

π0( ⋅ |s) = Unif(A)
π ∈ {π0, …, πT−1},

Vπ ≥ V⋆ −
log A

ηT
−

1
(1 − γ)2T

.

• Global optimality despite non-concavity in the objective


• No  dependence at all; log-dependence on 


• No coverage requirement on the initial distribution 

|S | |A |

μ
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1. Since we run Mirror Ascent per state, we have that for all :s ∈ S

T−1

∑
t=0

⟨π⋆( ⋅ |s), Aπt(s, ⋅ )⟩ − ⟨πt( ⋅ |s), Aπt(s, ⋅ )⟩

=0

regret of mirror ascent on s

≲ ln( |A | )T .

2. Add  on both sides, and via performance difference lemma [Kakade & Langford 2003]:𝔼s∼dπ⋆
μ

T−1

∑
t=0

Vπ⋆ − Vπt ∝
T−1

∑
t=0

𝔼s∼dπ⋆
μ [𝔼a∼π⋆(⋅|s)Aπt(s, a)] ≲ ln( |A | )T .

 ( see the exercise in recitation for a detailed proof with approximation on , 

and see chapter 10 in AJKS monograph for the proof for  rate)

Qπt

1/T



Summary so far:

Policy Gradient and NPG: 

Global Convergence vanilla PG and NPG in tabular MDPs with softmax parameterization


NPG w/ approximation in Recitation



Part 1C: Exploration in tabular 
MDP w/ UCB-Value Iteration



In this part: 

Question: how to explore efficient if we do not know (P, r)
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We need to perform efficient exploration when learning:

The combination lock problem: 

R=0.1

R=0.1

R=1s0

a1

a2

a3

The prob of a random walk reaching the goal is exponentially small wrt H

The principle behind UCB-VI: Optimism in the face of uncertainty

Initial state
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Problem setup, learning protocol, and goal

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s0

1. Learner initializes a policy π0

2. At episode n, learner executes  to draw a trajectory starting at : πn s0
{sn

h , an
h , rn

h}H−1
h=0 , with an

h = πn(sn
h), rn

h = r(sn
h , an

h), sn
h+1 ∼ P( ⋅ |sn

h , an
h)

3. Learner updates policy to  using all prior informationπn+1

Sub-linear regret:

𝔼 [
N

∑
n=1

(V⋆ − Vπn)] = poly(S, A, H) N

learning protocol:

Goal:

transitions  unknown, but reward  known{Ph}H−1
h=0 r(s, a)
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UCBVI: Optimistic Model-based Learning

Inside iteration n :

Use all previous data to estimate transitions  ̂P n
0, …, ̂P n

H−1

Optimistic planning with learned model: πn = Value-Iter ({ ̂P n
h, rh + bn

h}H−1
h=1 )

Collect a new trajectory by executing  in the real world  starting from πn {Ph}H−1
h=0 s0

Design reward bonus bn
h(s, a), ∀s, a, h
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𝒟n
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n−1
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Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h, Nn
h(s, a, s′￼) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′￼)}, ∀s, a, h

Estimate model   (i.e., MLE):̂P n
h(s′￼|s, a), ∀s, a, s′￼, h

̂P n
h(s′￼|s, a) =

Nn
h(s, a, s′￼)
Nn

h(s, a)



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode n using  and { ̂P n
h}h {rh + bn

h}h



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode n using  and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode n using  and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h( ⋅ |s, a) ⋅ ̂V n
h+1, H}, ∀s, a



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode n using  and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h( ⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a



UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode :n

𝒟n
h = {si

h, ai
h, si

h+1}
n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

ln (SAHN/δ)
Nn

h(s, a)
Encourage to explore 

new state-actions 

Value Iteration (aka DP) at episode n using  and { ̂P n
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h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s ̂V n

h ∞
≤ H, ∀h, n

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h( ⋅ |s, a) ⋅ ̂V n
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UCBVI: Put All Together

For n = 1 → N :

3. Estimate  ̂P n : ̂P n
h(s′￼|s, a) =

Nn
h(s, a, s′￼)
Nn

h(s, a)
, ∀s, a, s′￼, h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′￼) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′￼)}, ∀s, a, a′￼, h

4. Plan: πn = VI ({ ̂P n
h, rh + bn

h}h), with bn
h(s, a) = cH

ln(SAHN/δ)
Nn

h(s, a)

5. Execute  πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}
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Theorem: UCBVI Regret Bound

𝔼 [RegretN] := 𝔼 [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 S2AN)

Dependency on H and S are suboptimal; but the same algorithm can achieve  in the 
leading term [Azar et.al 17 ICML]


H2 SAN

Note that we consider expected regret here (policy  is a random quantity). 

High probability version is not hard to get (need to do a martingale argument)

πn

Remarks:

We will prove the following in the recitation:
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h(s) ≥ V⋆
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Key lemma 2: regret decomposition:

Regret at iter n = V⋆
0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

≤ ∑
h

𝔼s,a∼dπn
h [bn

h(s, a) + ( ̂P n
h( ⋅ |s, a) − P⋆

h ( ⋅ |s, a))⊤ ̂V n
h+1]

If  is suboptimal, i.e.,  is large, then  must visit some  
pairs with large bonus  or wrong  

πn V⋆(s0) − Vπn(s0) πn (s, a)
b(s, a) ̂P ( ⋅ |s, a)



Summary 

1. Basics of MDPs:  

Bellman Equation / Optimality; two planning algs: Value Iteration and 
Policy Iteration

2. Policy Gradient:  

Vanilla PG formulation & Natural Policy Gradient with their global convergence

3. Efficient exploration in tabular MDPs:  

The UCB-VI algorithm via the principle of optimism in the face of uncertainty


