Statistical Foundations of Reinforcement Learning: I

COLT 2021

Akshay Krishnamurthy (MSR, akshaykr@microsoft.com)

Wen Sun (Cornell, ws455@cornell.edu)

Reinforcement Learning: Motivation and empirical progress

Stratospheric balloons [Bellemare et.al]

DeepMind Starcraft [Vinyals et.al]

OpenAl Dexterous manipulation [Akkaya et.al]

Learning Agent

Determine action based on state

Learning Agent

Determine action based on state

Send reward and next state

Learning Agent

Determine action based on state

Send reward and next state

Learning Agent

Determine action based on state

Send reward and next state

Learning Agent

Determine action based on state

Send reward and next state

Learning Agent

Determine action based on state

Send reward and next state

Learning Agent

Determine action based on state

Send reward and next state

Why is RL hard?

Policy search methods;

Plan for the tutorial

Part 1: Tabular setting

- 1. Basics and key concepts
- 2. Policy optimization and Natural Policy Gradient
- 3. UCB-Value Iteration

Part 2: Problem set

Part 3: Function approximation + Exploration

- 1. Linear methods and complexity
- 2. Nonlinear methods, bellman rank, bilinear classes, representation learning

Part 1A: MDP Basics

Markov Decision Processes (Discounted version)

Learning Agent

policy $\pi(a \mid s)$

Determine action based on state

Infinitely many steps

Send reward and next state

$$r(s,a), s' \sim P(\cdot \mid s,a)$$

$$\mathcal{M} = \{S, A, P, r, \gamma, \mu\}$$

$$\mu \in \Delta(S)$$

$$P: S \times A \mapsto \Delta(S)$$

$$r: S \times A \rightarrow [0,1]$$

$$\gamma \in [0,1)$$

Markov Decision Processes (Discounted version)

Learning Agent

Determine action based on state

Infinitely many steps

Send reward and next state

$$r(s,a), s' \sim P(\cdot \mid s,a)$$

Environment

$$\mathcal{M} = \{S, A, P, r, \gamma, \mu\}$$

$$\mu \in \Delta(S)$$

$$P: S \times A \mapsto \Delta(S)$$

$$r: S \times A \rightarrow [0,1]$$

$$\gamma \in [0,1)$$

Objective:

$$\max_{\pi} \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \, | \, s_0 \sim \mu, \, a_h \sim \pi(\, . \, | \, s_h), \, s_{h+1} \sim P(\, . \, | \, s_h, \, a_h) \right]$$

Average State-action Distributions

Given a policy $\pi: S \mapsto \Delta(A)$

Denote $d_{\mu,h}^{\pi}(s,a) := P^{\pi}((s_h,a_h) = (s,a))$, i.e., probability of π hitting (s,a) at time step h

Average State-action Distributions

Given a policy $\pi: S \mapsto \Delta(A)$

Denote $d_{u,h}^{\pi}(s,a) := P^{\pi}\left((s_h,a_h) = (s,a)\right)$, i.e., probability of π hitting (s,a) at time step h

Denote
$$d^\pi_\mu(s,a) := (1-\gamma)\sum_{h=0}^\infty \gamma^h d^\pi_h(s,a)$$
 as the average state-action distribution

Average State-action Distributions

Given a policy $\pi: S \mapsto \Delta(A)$

Denote $d_{u,h}^{\pi}(s,a) := P^{\pi}\left((s_h,a_h) = (s,a)\right)$, i.e., probability of π hitting (s,a) at time step h

Denote $d^\pi_\mu(s,a) := (1-\gamma)\sum_{h=0}^\infty \gamma^h d^\pi_h(s,a)$ as the average state-action distribution

We will abuse notation a bit and denote $d^\pi_\mu(s) := \sum_a d^\pi_\mu(s,a)$ as the average state-distribution

Value function $V^{\pi}(s)$: total reward when starting in state s and following π afterwards

Value function $V^{\pi}(s)$: total reward when starting in state s and following π afterwards

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| s_{0} = s, a_{h} \sim \pi(s_{h}), s_{h+1} \sim P(\cdot | s_{h}, a_{h})\right]$$

Value function $V^{\pi}(s)$: total reward when starting in state s and following π afterwards

$$\begin{split} V^{\pi}(s) &= \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\,\cdot\,|\, s_h, a_h)\right] \\ &= \mathbb{E}_{a \sim \pi(\cdot|s)}\left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s')\right] \end{split} \tag{Bellman equation}$$

Value function $V^{\pi}(s)$: total reward when starting in state s and following π afterwards

$$\begin{split} V^{\pi}(s) &= \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\,\cdot\,|\, s_h, a_h)\right] \\ &= \mathbb{E}_{a \sim \pi(\cdot|s)}\left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s')\right] \end{split} \tag{Bellman equation}$$

Q function $Q^{\pi}(s,a)$: total reward when starting in state s and action a and following π afterwards

Value function $V^{\pi}(s)$: total reward when starting in state s and following π afterwards

$$\begin{split} V^{\pi}(s) &= \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\,\cdot\,|\, s_h, a_h)\right] \\ &= \mathbb{E}_{a \sim \pi(\cdot|s)}\left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s')\right] \end{split} \tag{Bellman equation}$$

Q function $Q^{\pi}(s,a)$: total reward when starting in state s and action a and following π afterwards

$$Q^{\pi}(s, a) = \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, (s_0, a_0) = (s, a), a_h \sim \pi(s_h), s_{h+1} \sim P(\,\cdot\,|\, s_h, a_h)\right]$$

Value function $V^{\pi}(s)$: total reward when starting in state s and following π afterwards

$$\begin{split} V^{\pi}(s) &= \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \,\middle|\, s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\,\cdot\,|\, s_h, a_h)\right] \\ &= \mathbb{E}_{a \sim \pi(\cdot|s)}\left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} V^{\pi}(s')\right] \end{split} \tag{Bellman equation}$$

Q function $Q^{\pi}(s,a)$: total reward when starting in state s and action a and following π afterwards

$$Q^{\pi}(s, a) = \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h)\right| (s_0, a_0) = (s, a), a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h)\right]$$

$$= r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\pi}(s')$$

(Bellman equation)

There exists a deterministic stationary policy $\pi^{\star}: S \mapsto A$, s.t., $V^{\pi^{\star}}(s) \geq V^{\pi}(s), \forall s, \pi$

There exists a deterministic stationary policy $\pi^*: S \mapsto A$, s.t.,

$$V^{\pi^*}(s) \geq V^{\pi}(s), \forall s, \pi$$

We denote $V^\star := V^{\pi^\star}, Q^\star := Q^{\pi^\star}$

There exists a deterministic stationary policy $\pi^*: S \mapsto A$, s.t.,

$$V^{\pi^*}(s) \geq V^{\pi}(s), \forall s, \pi$$

We denote
$$V^\star := V^{\pi^\star}, Q^\star := Q^{\pi^\star}$$

Theorem 1: Bellman Optimality

$$\forall s, a: Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \max_{a'} Q^*(s', a')$$

There exists a deterministic stationary policy $\pi^*: S \mapsto A$, s.t.,

$$V^{\pi^*}(s) \geq V^{\pi}(s), \forall s, \pi$$

We denote
$$V^\star := V^{\pi^\star}, Q^\star := Q^{\pi^\star}$$

Theorem 1: Bellman Optimality

$$\forall s, a: Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \max_{a'} Q^*(s', a')$$

Theorem 2: Bellman Optimality

For any $Q: S \times A \to \mathbb{R}$, if $Q(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \max_{a'} Q(s',a')$

for all s, a, then $Q(s, a) = Q^*(s, a)$, $\forall s$, a

Planning in MDP with known transition P and reward r

i.e., how to compute π^* (and V^* / Q^*) given the MDP (P,r)

Idea: fixed point iteration

Define: Bellman operator $\mathcal{T}: (S \times A \to \mathbb{R}) \to (S \times A \to \mathbb{R})$

$$(\mathcal{T}f)_{s,a} := r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)}[\max_{a'} f(s',a')]$$

Idea: fixed point iteration

Define: Bellman operator $\mathcal{T}: (S \times A \to \mathbb{R}) \to (S \times A \to \mathbb{R})$

$$(\mathcal{I}f)_{s,a} := r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)}[\max_{a'} f(s',a')]$$

VI Algorithm: Initialize $Q^{(0)}$ s.t., $Q^{(0)}(s,a) \in [0,1/(1-\gamma))$

Iterate $Q^{(t+1)} \leftarrow \mathcal{T}Q^{(t)}$

Idea: fixed point iteration

Define: Bellman operator $\mathcal{T}: (S \times A \to \mathbb{R}) \to (S \times A \to \mathbb{R})$

$$(\mathcal{I}f)_{s,a} := r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)}[\max_{a'} f(s',a')]$$

VI Algorithm: Initialize $Q^{(0)}$ s.t., $Q^{(0)}(s,a) \in [0,1/(1-\gamma))$

Iterate
$$Q^{(t+1)} \leftarrow \mathcal{T}Q^{(t)}$$

Theorem: Induced policy $\pi^{(t)}: s \mapsto \arg\max_{a} Q^{(t)}(s, a)$ satisfies

$$V^{\pi^{(t)}}(s) \ge V^{\star}(s) - \frac{2\gamma^t}{1 - \gamma} \|Q^{(0)} - Q^{\star}\|_{\infty} \quad \forall s \in S$$

Idea: fixed point iteration

Define: Bellman operator $\mathcal{T}: (S \times A \to \mathbb{R}) \to (S \times A \to \mathbb{R})$

$$(\mathcal{T}f)_{s,a} := r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)}[\max_{a'} f(s',a')]$$

VI Algorithm: Initialize $Q^{(0)}$ s.t., $Q^{(0)}(s,a) \in [0,1/(1-\gamma))$

Iterate $Q^{(t+1)} \leftarrow \mathcal{T}Q^{(t)}$

Contraction lemma

$$\|\mathcal{T}Q - \mathcal{T}Q'\|_{\infty} \le \gamma \|Q - Q'\|_{\infty}$$

Theorem: Induced policy $\pi^{(t)}: s \mapsto \arg\max_{a} Q^{(t)}(s, a)$ satisfies

$$V^{\pi^{(t)}}(s) \ge V^{\star}(s) - \frac{2\gamma^t}{1 - \gamma} \|Q^{(0)} - Q^{\star}\|_{\infty} \quad \forall s \in S$$

MDP Planning: Policy iteration

Idea: Alternate between policy evaluation and policy improvement

Initialize $\pi^{(0)}: S \to A$

Repeat:

- Compute $Q^{\pi^{(t)}}$ (evaluation)
- Update $\pi^{(t+1)}$: $\pi^{(t+1)}(s) = \arg\max_{a} Q^{\pi^{(t)}}(s, a)$ (improvement)

MDP Planning: Policy iteration

Idea: Alternate between policy evaluation and policy improvement

Initialize $\pi^{(0)}: S \to A$

Repeat:

Linear system solve

- Compute $Q^{\pi^{(t)}}$ (evaluation)
- Update $\pi^{(t+1)}$: $\pi^{(t+1)}(s) = \arg\max_{a} Q^{\pi^{(t)}}(s, a)$ (improvement)

MDP Planning: Policy iteration

Idea: Alternate between policy evaluation and policy improvement

Initialize $\pi^{(0)}: S \to A$

Repeat:

Linear system solve

- Compute $Q^{\pi^{(t)}}$ (evaluation)
- Update $\pi^{(t+1)}$: $\pi^{(t+1)}(s) = \arg\max_{a} Q^{\pi^{(t)}}(s, a)$ (improvement)

Theorem: Geometric convergence:

$$\|V^{\pi^{(t+1)}} - V^{\star}\|_{\infty} \le \gamma \|V^{\pi^{(t)}} - V^{\star}\|_{\infty}$$

Finite Horizon MDPs

$$\mathcal{M} = \{S, A, P, r, \mu, H\}$$

$$P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad H \in \mathbb{N}^+, \quad \mu \in \Delta(S)$$

time-dependent policies: $\pi^* := \{\pi_0^*, ..., \pi_{H-1}^*\}$

time-dependent V/Q functions: $\{V_h^{\star}\}_{h=0}^{H-1}, \{Q_h^{\star}\}_{h=0}^{H-1}$

Finite Horizon MDPs

$$\mathcal{M} = \{S, A, P, r, \mu, H\}$$

$$P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad H \in \mathbb{N}^+, \quad \mu \in \Delta(S)$$

Episode:

$$s_0 \sim \mu$$

For h = 0,..., H - 1:

- Take action a_h
- Collect reward $r(s_h, a_h)$
- Transition $s_{h+1} \sim P(\cdot \mid s_h, a_h)$

time-dependent policies: $\pi^{\star} := \{\pi_0^{\star}, ..., \pi_{H-1}^{\star}\}$

time-dependent V/Q functions: $\{V_h^{\star}\}_{h=0}^{H-1}, \{Q_h^{\star}\}_{h=0}^{H-1}$

Finite Horizon MDPs

$$\mathcal{M} = \{S, A, P, r, \mu, H\}$$

$$P: S \times A \mapsto \Delta(S), \quad r: S \times A \to [0,1], \quad H \in \mathbb{N}^+, \quad \mu \in \Delta(S)$$

Episode:

$$S_0 \sim \mu$$
 For $h = 0, ..., H - 1$:

- Take action a_h
- Collect reward $r(s_h, a_h)$
- Transition $s_{h+1} \sim P(\cdot \mid s_h, a_h)$

Objective function:
$$V(\pi) = \mathbb{E}\left[\sum_{h=0}^{H-1} r(s_h, a_h)\right]$$

time-dependent policies:
$$\pi^{\star} := \{\pi_0^{\star}, ..., \pi_{H-1}^{\star}\}$$

time-dependent V/Q functions: $\{V_h^{\star}\}_{h=0}^{H-1}, \{Q_h^{\star}\}_{h=0}^{H-1}$

Summary so far:

MDP definitions (discounted infinite horizon & finite horizon);

State-action distributions, value and Q functions, and two planning algorithms

Part 1B: Policy Gradient & Natural Policy Gradient

Policy Optimization Motivation: Practical

[AlphaZero, Silver et.al, 17]

[OpenAl Five, 18]

[OpenAI,19]

Policy Optimization Motivation: Simple

$$\pi_{\theta}(a \mid s) := \pi(a \mid s; \theta) \qquad V^{\pi_{\theta}} = \mathbb{E}_{\pi_{\theta}} \left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} \right]$$
$$\theta_{t+1} = \theta_{t} + \eta \left[\nabla_{\theta} V^{\pi_{\theta}} \right]_{\theta = \theta_{t}}$$

Policy Optimization Motivation: Simple

$$\pi_{\theta}(a \mid s) := \pi(a \mid s; \theta) \qquad V^{\pi_{\theta}} = \mathbb{E}_{\pi_{\theta}} \left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} \right]$$
$$\theta_{t+1} = \theta_{t} + \eta \left[\nabla_{\theta} V^{\pi_{\theta}} \right]_{\theta = \theta_{t}}$$

We can have a closed-form expression for PG:

Policy Gradient Theorem [Sutton, McAllester, Singh, Mansour]:

Define advantage function $A^{\pi_{\theta}}(s,a) := Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$, we have:

$$\nabla_{\theta} V^{\pi_{\theta}} = \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a) \right]$$

Policy Optimization Motivation: Simple

$$\pi_{\theta}(a \mid s) := \pi(a \mid s; \theta) \qquad V^{\pi_{\theta}} = \mathbb{E}_{\pi_{\theta}} \left[\sum_{h=0}^{\infty} \gamma^{h} r_{h} \right]$$
$$\theta_{t+1} = \theta_{t} + \eta \left[\nabla_{\theta} V^{\pi_{\theta}} \right]_{\theta = \theta_{t}}$$

We can have a closed-form expression for PG:

Policy Gradient Theorem [Sutton, McAllester, Singh, Mansour]:

Define advantage function $A^{\pi_{\theta}}(s,a) := Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$, we have:

$$\nabla_{\theta} V^{\pi_{\theta}} = \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a) \right]$$

Adjust the probability $\pi_{\theta}(a \mid s)$ proportional to $A^{\pi_{\theta}}(s, a) := Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)$

Consider tabular MDPs, with
$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}, \ \theta_{s,a} \in \mathbb{R}$$

Consider tabular MDPs, with
$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}, \ \theta_{s,a} \in \mathbb{R}$$

PG formulation:

$$\frac{\partial V(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d^{\pi}_{\mu}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a), \text{ where } A^{\pi_{\theta}}(s, a) = Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)$$

Consider tabular MDPs, with
$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}, \ \theta_{s,a} \in \mathbb{R}$$

PG formulation:

$$\frac{\partial V(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d^{\pi}_{\mu}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a), \text{ where } A^{\pi_{\theta}}(s, a) = Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)$$

Despite being non-concave, we have global convergence:

Consider tabular MDPs, with
$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}, \ \theta_{s,a} \in \mathbb{R}$$

PG formulation:

$$\frac{\partial V(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d^{\pi}_{\mu}(s) \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a), \text{ where } A^{\pi_{\theta}}(s, a) = Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)$$

Despite being non-concave, we have global convergence:

Theorem (Informal) [Agarwal, Kakade, Lee, Mahajan 20; Mei, Xiao, Szepesvari, Schuurmans 20].

Assume $\mu(s) > 0, \forall s$, the PG algorithm $\theta^{t+1} := \theta^t + \eta \nabla_\theta V(\theta) |_{\theta=\theta^t}$ converges to global optimality

[Kakade 03]

[Kakade 03]

Define Fisher information matrix

$$F_{\theta} = \mathbb{E}_{s, a \sim d^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) \left(\nabla_{\theta} \ln \pi_{\theta}(a \mid s) \right)^{\mathsf{T}} \right] \in \mathbb{R}^{d_{\theta} \times d_{\theta}}$$

[Kakade 03]

Define Fisher information matrix

$$F_{\theta} = \mathbb{E}_{s, a \sim d^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) \left(\nabla_{\theta} \ln \pi_{\theta}(a \mid s) \right)^{\mathsf{T}} \right] \in \mathbb{R}^{d_{\theta} \times d_{\theta}}$$

Natural policy gradient uses F_{θ} to pre-condition PG:

$$\theta^{t+1} := \theta^t + \eta F_{\theta^t}^{-1} \nabla_{\theta} V(\theta) |_{\theta = \theta^t}$$

[Kakade 03]

Define Fisher information matrix

$$F_{\theta} = \mathbb{E}_{s, a \sim d^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) \left(\nabla_{\theta} \ln \pi_{\theta}(a \mid s) \right)^{\mathsf{T}} \right] \in \mathbb{R}^{d_{\theta} \times d_{\theta}}$$

Natural policy gradient uses F_{θ} to pre-condition PG:

$$\theta^{t+1} := \theta^t + \eta F_{\theta^t}^{-1} \nabla_{\theta} V(\theta) |_{\theta = \theta^t}$$

(For simplicity, assume F_{θ} is full rank —- otherwise use pseudo inverse)

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

$$\max_{\theta} \langle \theta, \nabla_{\theta} V(\theta) |_{\theta = \theta^{t}} \rangle, \text{ s.t., } KL\left(\rho_{\theta^{t}} | | \rho_{\theta}\right) \leq \delta$$

$$\left(\rho_{\theta}(\tau) := \mu(s_0) \prod_h \pi(a_h \mid s_h) P(s_{h+1} \mid s_h, a_h)\right)$$

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

$$\max_{\theta} \langle \theta, \nabla_{\theta} V(\theta) |_{\theta = \theta^{t}} \rangle, \text{ s.t., } KL\left(\rho_{\theta^{t}} | | \rho_{\theta}\right) \leq \delta$$

$$\left(\rho_{\theta}(\tau) := \mu(s_{0}) \prod_{h} \pi(a_{h} | s_{h}) P(s_{h+1} | s_{h}, a_{h})\right)$$

i.e., optimize the linearized objective s.t. a KL constraint forcing new policy's trajectory distribution staying close to old one's

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

$$\begin{split} \max_{\theta} \langle \theta, \nabla_{\theta} V(\theta) \,|_{\theta = \theta^{t}} \rangle, \text{ s.t., } KL\left(\rho_{\theta^{t}} |\, |\, \rho_{\theta}\right) &\leq \delta \\ \left(\rho_{\theta}(\tau) := \mu(s_{0}) \prod_{h} \pi(a_{h} |\, s_{h}) P(s_{h+1} |\, s_{h}, a_{h})\right) \end{split}$$

i.e., optimize the linearized objective s.t. a KL constraint forcing new policy's trajectory distribution staying close to old one's

Further perform second-order Taylor expansion on $KL\left({
ho _{ heta ^t}} | \ |
ho _{ heta}
ight)$ at $heta ^t$:

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

$$\max_{\theta} \langle \theta, \nabla_{\theta} V(\theta) |_{\theta = \theta^{t}} \rangle, \text{ s.t., } KL\left(\rho_{\theta^{t}} | | \rho_{\theta}\right) \leq \delta$$

$$\left(\rho_{\theta}(\tau) := \mu(s_{0}) \prod_{h} \pi(a_{h} | s_{h}) P(s_{h+1} | s_{h}, a_{h})\right)$$

i.e., optimize the linearized objective s.t. a KL constraint forcing new policy's trajectory distribution staying close to old one's

Further perform second-order Taylor expansion on $KL\left(\rho_{\theta^t} \mid \mid \rho_{\theta}\right)$ at θ^t :

$$KL\left(\rho_{\theta^t}||\rho_{\theta}\right) \approx (\theta - \theta^t)^{\mathsf{T}} F_{\theta^t}(\theta - \theta^t)$$

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

$$\begin{split} \max_{\theta} \langle \theta, \nabla_{\theta} V(\theta) \,|_{\theta = \theta^{t}} \rangle, \text{ s.t., } KL\left(\rho_{\theta^{t}} |\, |\, \rho_{\theta}\right) &\leq \delta \\ \left(\rho_{\theta}(\tau) := \mu(s_{0}) \prod_{h} \pi(a_{h} |\, s_{h}) P(s_{h+1} |\, s_{h}, a_{h})\right) \end{split}$$

i.e., optimize the linearized objective s.t. a KL constraint forcing new policy's trajectory distribution staying close to old one's

Further perform second-order Taylor expansion on $KL\left(\rho_{\theta^t} | | \rho_{\theta}\right)$ at θ^t :

$$KL\left(\rho_{\theta^t}||\rho_{\theta}\right) \approx (\theta - \theta^t)^{\mathsf{T}} F_{\theta^t}(\theta - \theta^t)$$

NPG then is revealed by solving the convex program:

$$\max_{\theta} \langle \theta, \nabla_{\theta} V(\theta) |_{\theta = \theta^t} \rangle, \text{ s.t., } (\theta - \theta^t)^{\mathsf{T}} F_{\theta^t} (\theta - \theta^t) \leq \delta$$

Recall the softmax Policy for Tabular MDPs:

$$\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$

Recall the softmax Policy for Tabular MDPs:

$$\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$

We can show that the NPG update $\theta^{t+1} := \theta^t + \eta F_{\theta^t}^{-1} \nabla_{\theta} V(\theta^t)$ is equivalent to (see the exercise in recitation):

Recall the softmax Policy for Tabular MDPs:

$$\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$

We can show that the NPG update $\theta^{t+1} := \theta^t + \eta F_{\theta^t}^{-1} \nabla_{\theta} V(\theta^t)$ is equivalent to (see the exercise in recitation):

$$(\pi^t := \pi_{\theta^t}) \ \pi^{t+1}(a \mid s) \propto \pi^t(a \mid s) \cdot \exp\left(\eta A^{\pi^t}(s, a)\right)$$

Recall the softmax Policy for Tabular MDPs:

$$\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$

We can show that the NPG update $\theta^{t+1} := \theta^t + \eta F_{\theta^t}^{-1} \nabla_{\theta} V(\theta^t)$ is equivalent to (see the exercise in recitation):

$$(\pi^t := \pi_{\theta^t}) \ \pi^{t+1}(a \mid s) \propto \pi^t(a \mid s) \cdot \exp\left(\eta A^{\pi^t}(s, a)\right)$$

Proof sketch: $A^{\pi_{\theta^t}}(\cdot,\cdot) \propto \arg\min_{x} \|\nabla_{\theta} V(\theta^t) - F_{\theta^t} x\|_2^2$ (see recitation for details)

Recall the softmax Policy for Tabular MDPs:

$$\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A$$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$

We can show that the NPG update $\theta^{t+1} := \theta^t + \eta F_{\theta^t}^{-1} \nabla_{\theta} V(\theta^t)$ is equivalent to (see the exercise in recitation):

$$(\pi^t := \pi_{\theta^t}) \ \pi^{t+1}(a \mid s) \propto \pi^t(a \mid s) \cdot \exp\left(\eta A^{\pi^t}(s, a)\right)$$

Proof sketch: $A^{\pi_{\theta^t}}(\cdot,\cdot) \propto \arg\min_{x} \|\nabla_{\theta} V(\theta^t) - F_{\theta^t} x\|_2^2$ (see recitation for details)

Interpretation: for each state s, NPG runs online mirror ascent with $A^{\pi^t}(s, \cdot) \in \mathbb{R}^{|A|}$ as the reward vector at iter t

Global Convergence of the exact Natural policy gradient

$$\pi^{t+1}(a \mid s) \propto \pi^t(a \mid s) \cdot \exp\left(\eta A^{\pi^t}(s, a)\right)$$

(Note here we are studying the **idealized case where we have exact** $A^{\pi^l}(\cdot,\cdot)$. We will look into learning/approximation in the recitation)

Global Convergence of the exact Natural policy gradient

$$\pi^{t+1}(a \mid s) \propto \pi^t(a \mid s) \cdot \exp\left(\eta A^{\pi^t}(s, a)\right)$$

(Note here we are studying the **idealized case where we have exact** $A^{\pi'}(\cdot,\cdot)$. We will look into learning/approximation in the recitation)

Theorem [Agarwal, Kakade, Lee, Mahajan 20]: Initialize $\pi^0(\cdot \mid s) = \text{Unif}(A)$. After T iterations, there exits a policy $\pi \in \{\pi^0, ..., \pi^{T-1}\}$, s.t., $V^\pi \geq V^\star - \frac{\log A}{\eta T} - \frac{1}{(1-\gamma)^2 T}.$

Global Convergence of the exact Natural policy gradient

$$\pi^{t+1}(a \mid s) \propto \pi^t(a \mid s) \cdot \exp\left(\eta A^{\pi^t}(s, a)\right)$$

(Note here we are studying the **idealized case where we have exact** $A^{\pi'}(\cdot,\cdot)$. We will look into learning/approximation in the recitation)

Theorem [Agarwal, Kakade, Lee, Mahajan 20]: Initialize $\pi^0(\;\cdot\;|\;s) = \text{Unif}(A)$. After T iterations, there exits a policy $\pi \in \{\pi^0, \dots, \pi^{T-1}\}$, s.t., $V^\pi \geq V^\star - \frac{\log A}{\eta T} - \frac{1}{(1-\gamma)^2 T}.$

- Global optimality despite non-concavity in the objective
- No |S| dependence at all; log-dependence on |A|
- No coverage requirement on the initial distribution μ

1. Since we run Mirror Ascent per state, we have that for all $s \in S$:

1. Since we run Mirror Ascent per state, we have that for all $s \in S$:

$$\sum_{t=0}^{T-1} \langle \pi^{\star}(\cdot \mid s), A^{\pi^{t}}(s, \cdot) \rangle - \underbrace{\langle \pi^{t}(\cdot \mid s), A^{\pi^{t}}(s, \cdot) \rangle}_{=0} \lesssim \sqrt{\ln(|A|)T}.$$

regret of mirror ascent on s

1. Since we run Mirror Ascent per state, we have that for all $s \in S$:

$$\sum_{t=0}^{T-1} \langle \pi^{\star}(\cdot \mid s), A^{\pi^{t}}(s, \cdot) \rangle - \underbrace{\langle \pi^{t}(\cdot \mid s), A^{\pi^{t}}(s, \cdot) \rangle}_{=0} \lesssim \sqrt{\ln(|A|)T}.$$

regret of mirror ascent on s

2. Add $\mathbb{E}_{s \sim d_u^{\pi^*}}$ on both sides, and via performance difference lemma [Kakade & Langford 2003]:

$$\sum_{t=0}^{T-1} V^{\pi^{\star}} - V^{\pi^{t}} \propto \sum_{t=0}^{T-1} \mathbb{E}_{s \sim d_{\mu}^{\pi^{\star}}} \left[\mathbb{E}_{a \sim \pi^{\star}(\cdot \mid s)} A^{\pi^{t}}(s, a) \right] \lesssim \sqrt{\ln(|A|)T}.$$

Proof Sketch for NPG's global optimality (a $1/\sqrt{T}$ rate)

1. Since we run Mirror Ascent per state, we have that for all $s \in S$:

$$\sum_{t=0}^{T-1} \langle \pi^{\star}(\cdot \mid s), A^{\pi^{t}}(s, \cdot) \rangle - \underbrace{\langle \pi^{t}(\cdot \mid s), A^{\pi^{t}}(s, \cdot) \rangle}_{=0} \lesssim \sqrt{\ln(|A|)T}.$$

regret of mirror ascent on s

2. Add $\mathbb{E}_{s \sim d_u^{\pi^*}}$ on both sides, and via performance difference lemma [Kakade & Langford 2003]:

$$\sum_{t=0}^{T-1} V^{\pi^{\star}} - V^{\pi^{t}} \propto \sum_{t=0}^{T-1} \mathbb{E}_{s \sim d_{\mu}^{\pi^{\star}}} \left[\mathbb{E}_{a \sim \pi^{\star}(\cdot \mid s)} A^{\pi^{t}}(s, a) \right] \lesssim \sqrt{\ln(|A|)T}.$$

(see the exercise in recitation for a detailed proof with approximation on $Q^{\pi'}$, and see chapter 10 in AJKS monograph for the proof for 1/T rate)

Summary so far:

Policy Gradient and NPG:

Global Convergence vanilla PG and NPG in tabular MDPs with softmax parameterization

NPG w/ approximation in Recitation

Part 1C: Exploration in tabular MDP w/ UCB-Value Iteration

In this part:

Question: how to explore efficient if we do not know (P, r)

We need to perform efficient exploration when learning:

The combination lock problem:

We need to perform efficient exploration when learning:

The combination lock problem:

The prob of a random walk reaching the goal is exponentially small wrt ${\cal H}$

We need to perform efficient exploration when learning:

The combination lock problem:

The prob of a random walk reaching the goal is exponentially small wrt ${\cal H}$

The principle behind UCB-VI: Optimism in the face of uncertainty

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s_0

transitions $\{P_h\}_{h=0}^{H-1}$ unknown, but reward r(s,a) known

learning protocol:

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s_0

transitions $\{P_h\}_{h=0}^{H-1}$ unknown, but reward r(s,a) known

learning protocol:

1. Learner initializes a policy π^0

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s_0

transitions $\{P_h\}_{h=0}^{H-1}$ unknown, but reward r(s,a) known

learning protocol:

- 1. Learner initializes a policy π^0
- 2. At episode n, learner executes π^n to draw a trajectory starting at s_0 :

$$\{s_h^n, a_h^n, r_h^n\}_{h=0}^{H-1}$$
, with $a_h^n = \pi^n(s_h^n), r_h^n = r(s_h^n, a_h^n), s_{h+1}^n \sim P(\cdot \mid s_h^n, a_h^n)$

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s_0

transitions $\{P_h\}_{h=0}^{H-1}$ unknown, but reward r(s,a) known

learning protocol:

- 1. Learner initializes a policy π^0
- 2. At episode n, learner executes π^n to draw a trajectory starting at s_0 :

$$\{s_h^n, a_h^n, r_h^n\}_{h=0}^{H-1}$$
, with $a_h^n = \pi^n(s_h^n), r_h^n = r(s_h^n, a_h^n), s_{h+1}^n \sim P(\cdot \mid s_h^n, a_h^n)$

3. Learner updates policy to π^{n+1} using all prior information

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s_0

transitions $\{P_h\}_{h=0}^{H-1}$ unknown, but reward r(s,a) known

learning protocol:

- 1. Learner initializes a policy π^0
- 2. At episode n, learner executes π^n to draw a trajectory starting at s_0 :

$$\{s_h^n, a_h^n, r_h^n\}_{h=0}^{H-1}$$
, with $a_h^n = \pi^n(s_h^n), r_h^n = r(s_h^n, a_h^n), s_{h+1}^n \sim P(\cdot \mid s_h^n, a_h^n)$

3. Learner updates policy to π^{n+1} using all prior information

Goal:

Sub-linear regret:

$$\mathbb{E}\left[\sum_{n=1}^{N} \left(V^{\star} - V^{\pi^{n}}\right)\right] = \text{poly}(S, A, H)\sqrt{N}$$

Inside iteration n:

Inside iteration n:

Use all previous data to estimate transitions $\widehat{P}_0^n, \ldots, \widehat{P}_{H-1}^n$

Inside iteration n:

Use all previous data to estimate transitions $\widehat{P}_0^n, \ldots, \widehat{P}_{H-1}^n$

Design reward bonus $b_h^n(s, a), \forall s, a, h$

Inside iteration n:

Use all previous data to estimate transitions $\widehat{P}_0^n, \ldots, \widehat{P}_{H-1}^n$

Design reward bonus $b_h^n(s, a), \forall s, a, h$

Optimistic planning with learned model: $\pi^n = \text{Value-Iter}\left(\{\widehat{P}_h^n, r_h + b_h^n\}_{h=1}^{H-1}\right)$

Inside iteration n:

Use all previous data to estimate transitions $\widehat{P}_0^n, \ldots, \widehat{P}_{H-1}^n$

Design reward bonus $b_h^n(s, a), \forall s, a, h$

Optimistic planning with learned model: $\pi^n = \text{Value-Iter}\left(\{\widehat{P}_h^n, r_h + b_h^n\}_{h=1}^{H-1}\right)$

Collect a new trajectory by executing π^n in the real world $\{P_h\}_{h=0}^{H-1}$ starting from s_0

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h$$

Let us consider the **very beginning** of episode *n*:

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h$$

Let's also maintain some statistics using these datasets:

Let us consider the **very beginning** of episode n:

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h$$

Let's also maintain some statistics using these datasets:

$$N_h^n(s,a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s,a)\}, \forall s, a, h, \quad N_h^n(s,a,s') = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i, s_{h+1}^i) = (s,a,s')\}, \forall s, a, h$$

Let us consider the **very beginning** of episode n:

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h$$

Let's also maintain some statistics using these datasets:

$$N_h^n(s,a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s,a)\}, \forall s, a, h, \quad N_h^n(s,a,s') = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i, s_{h+1}^i) = (s,a,s')\}, \forall s, a, h$$

Estimate model $\widehat{P}_h^n(s'|s,a), \forall s,a,s',h$ (i.e., MLE):

$$\widehat{P}_h^n(s'|s,a) = \frac{N_h^n(s,a,s')}{N_h^n(s,a)}$$

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, \ N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h, a \in \mathbb{Z} \}$$

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, \ N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h,$$

$$b_h^n(s, a) = cH \sqrt{\frac{\ln(SAHN/\delta)}{N_h^n(s, a)}}$$

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, \ N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h,$$

$$b_h^n(s,a) = cH\sqrt{\frac{\ln{(SAHN/\delta)}}{N_h^n(s,a)}}$$
 Encourage to explore new state-actions

Let us consider the very beginning of episode *n*:

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, \ N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h,$$

$$b_h^n(s,a) = cH\sqrt{\frac{\ln{(SAHN/\delta)}}{N_h^n(s,a)}}$$
 Encourage to explore new state-actions

Value Iteration (aka DP) at episode n using $\{\widehat{P}_h^n\}_h$ and $\{r_h+b_h^n\}_h$

Let us consider the very beginning of episode *n*:

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, \ N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h,$$

$$b_h^n(s,a) = cH\sqrt{\frac{\ln{(SAHN/\delta)}}{N_h^n(s,a)}}$$
 Encourage to explore new state-actions

Value Iteration (aka DP) at episode n using $\{\widehat{P}_h^n\}_h$ and $\{r_h+b_h^n\}_h$

$$\widehat{V}_{H}^{n}(s) = 0, \forall s$$

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, \ N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h, a \in \mathbb{Z} \}$$

$$b_h^n(s, a) = cH\sqrt{\frac{\ln{(SAHN/\delta)}}{N_h^n(s, a)}}$$
 Encourage to explore new state-actions

Value Iteration (aka DP) at episode n using
$$\{\widehat{P}_h^n\}_h$$
 and $\{r_h+b_h^n\}_h$

$$\widehat{V}_{H}^{n}(s) = 0, \forall s \qquad \widehat{Q}_{h}^{n}(s, a) = \min \left\{ r_{h}(s, a) + b_{h}^{n}(s, a) + \widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, \quad H \right\}, \forall s, a$$

Let us consider the very beginning of episode *n*:

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, \ N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h, a \in \mathbb{Z} \}$$

$$b_h^n(s, a) = cH \sqrt{\frac{\ln{(SAHN/\delta)}}{N_h^n(s, a)}}$$
 Encourage to explore new state-actions

Value Iteration (aka DP) at episode n using $\{\widehat{P}_h^n\}_h$ and $\{r_h+b_h^n\}_h$

$$\widehat{V}_{H}^{n}(s) = 0, \forall s \qquad \widehat{Q}_{h}^{n}(s, a) = \min \left\{ r_{h}(s, a) + b_{h}^{n}(s, a) + \widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, \quad H \right\}, \forall s, a$$

$$\widehat{V}_{h}^{n}(s) = \max_{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s) = \arg\max_{a} \widehat{Q}_{h}^{n}(s, a), \forall s$$

Let us consider the very beginning of episode n:

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, \ N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h, a \in \mathbb{Z} \}$$

$$b_h^n(s, a) = cH \sqrt{\frac{\ln{(SAHN/\delta)}}{N_h^n(s, a)}}$$
 Encourage to explore new state-actions

Value Iteration (aka DP) at episode n using $\{\widehat{P}_h^n\}_h$ and $\{r_h+b_h^n\}_h$

$$\widehat{V}_{H}^{n}(s) = 0, \forall s \qquad \widehat{Q}_{h}^{n}(s, a) = \min \left\{ r_{h}(s, a) + b_{h}^{n}(s, a) + \widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, \quad H \right\}, \forall s, a$$

$$\widehat{V}_{h}^{n}(s) = \max_{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s) = \arg\max_{a} \widehat{Q}_{h}^{n}(s, a), \forall s \qquad \left\| \widehat{V}_{h}^{n} \right\|_{\infty} \leq H, \forall h, n$$

UCBVI: Put All Together

For $n = 1 \rightarrow N$:

1. Set
$$N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h$$

2. Set
$$N_h^n(s, a, s') = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i, s_{h+1}^i) = (s, a, s')\}, \forall s, a, a', h$$

3. Estimate
$$\widehat{P}^n$$
: $\widehat{P}^n_h(s'|s,a) = \frac{N_h^n(s,a,s')}{N_h^n(s,a)}, \forall s,a,s',h$

4. Plan:
$$\pi^n = VI\left(\{\widehat{P}_h^n, r_h + b_h^n\}_h\right)$$
, with $b_h^n(s, a) = cH\sqrt{\frac{\ln(SAHN/\delta)}{N_h^n(s, a)}}$

5. Execute
$$\pi^n$$
: $\{s_0^n, a_0^n, r_0^n, ..., s_{H-1}^n, a_{H-1}^n, r_{H-1}^n, s_H^n\}$

Theorem: UCBVI Regret Bound

We will prove the following in the recitation:

$$\mathbb{E}\left[\mathsf{Regret}_{N}\right] := \mathbb{E}\left[\sum_{n=1}^{N}\left(V^{\star} - V^{\pi^{n}}\right)\right] \leq \widetilde{O}\left(H^{2}\sqrt{S^{2}AN}\right)$$

Theorem: UCBVI Regret Bound

We will prove the following in the recitation:

$$\mathbb{E}\left[\mathsf{Regret}_N\right] := \mathbb{E}\left[\sum_{n=1}^N \left(V^{\star} - V^{\pi^n}\right)\right] \leq \widetilde{O}\left(H^2\sqrt{S^2AN}\right)$$

Remarks:

Note that we consider expected regret here (policy π^n is a random quantity). High probability version is not hard to get (need to do a martingale argument)

Theorem: UCBVI Regret Bound

We will prove the following in the recitation:

$$\mathbb{E}\left[\mathsf{Regret}_N\right] := \mathbb{E}\left[\sum_{n=1}^N \left(V^{\star} - V^{\pi^n}\right)\right] \leq \widetilde{O}\left(H^2\sqrt{S^2AN}\right)$$

Remarks:

Note that we consider expected regret here (policy π^n is a random quantity). High probability version is not hard to get (need to do a martingale argument)

Dependency on H and S are suboptimal; but the **same** algorithm can achieve $H^2\sqrt{SAN}$ in the leading term [Azar et.al 17 ICML]

VI at episode n under
$$\{\widehat{P}_h^n\}_h$$
 and $\{r_h+b_h^n\}_h$

$$\widehat{V}_{H}^{n}(s) = 0, \forall s \quad \widehat{Q}_{h}^{n}(s, a) = \min \left\{ r_{h}(s, a) + b_{h}^{n}(s, a) + \widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, \quad H \right\}, \forall s, a$$

$$\widehat{V}_{h}^{n}(s) = \max_{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s) = \arg\max_{a} \widehat{Q}_{h}^{n}(s, a), \forall s$$

VI at episode n under $\{\widehat{P}_h^n\}_h$ and $\{r_h + b_h^n\}_h$

$$\widehat{V}_{H}^{n}(s) = 0, \forall s \quad \widehat{Q}_{h}^{n}(s, a) = \min \left\{ r_{h}(s, a) + b_{h}^{n}(s, a) + \widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, \quad H \right\}, \forall s, a$$

$$\widehat{V}_{h}^{n}(s) = \max_{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s) = \arg\max_{a} \widehat{Q}_{h}^{n}(s, a), \forall s$$

Key lemma 1: optimism — our bonus is large enough s.t. $\widehat{V}_h^n(s) \geq V_h^{\star}(s), \forall s, h$

VI at episode n under $\{\widehat{P}_h^n\}_h$ and $\{r_h+b_h^n\}_h$

$$\widehat{V}_{H}^{n}(s) = 0, \forall s \quad \widehat{Q}_{h}^{n}(s, a) = \min \left\{ r_{h}(s, a) + b_{h}^{n}(s, a) + \widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, \quad H \right\}, \forall s, a$$

$$\widehat{V}_{h}^{n}(s) = \max_{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s) = \arg\max_{a} \widehat{Q}_{h}^{n}(s, a), \forall s$$

Key lemma 1: optimism — our bonus is large enough s.t. $\widehat{V}_h^n(s) \geq V_h^{\star}(s), \forall s, h$

Key lemma 2: regret decomposition:

Regret at iter
$$n = V_0^*(s_0) - V_0^{\pi^n}(s_0) \le \widehat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$$

VI at episode n under $\{\widehat{P}_h^n\}_h$ and $\{r_h+b_h^n\}_h$

$$\widehat{V}_{H}^{n}(s) = 0, \forall s \quad \widehat{Q}_{h}^{n}(s, a) = \min \left\{ r_{h}(s, a) + b_{h}^{n}(s, a) + \widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, \quad H \right\}, \forall s, a$$

$$\widehat{V}_{h}^{n}(s) = \max_{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s) = \arg\max_{a} \widehat{Q}_{h}^{n}(s, a), \forall s$$

Key lemma 1: optimism — our bonus is large enough s.t. $\widehat{V}_h^n(s) \geq V_h^\star(s), \forall s, h$

Key lemma 2: regret decomposition:

Regret at iter n =
$$V_0^{\star}(s_0) - V_0^{\pi^n}(s_0) \le \widehat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$$

$$\le \sum_h \mathbb{E}_{s,a \sim d_h^{\pi^n}} \left[b_h^n(s,a) + (\widehat{P}_h^n(\cdot | s,a) - P_h^{\star}(\cdot | s,a))^{\top} \widehat{V}_{h+1}^n \right]$$

VI at episode n under $\{\widehat{P}_h^n\}_h$ and $\{r_h+b_h^n\}_h$

$$\widehat{V}_{H}^{n}(s) = 0, \forall s \quad \widehat{Q}_{h}^{n}(s, a) = \min \left\{ r_{h}(s, a) + b_{h}^{n}(s, a) + \widehat{P}_{h}^{n}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{n}, \quad H \right\}, \forall s, a$$

$$\widehat{V}_{h}^{n}(s) = \max_{a} \widehat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s) = \arg\max_{a} \widehat{Q}_{h}^{n}(s, a), \forall s$$

Key lemma 1: optimism — our bonus is large enough s.t. $\widehat{V}_h^n(s) \geq V_h^\star(s), \forall s, h$

Key lemma 2: regret decomposition:

Regret at iter
$$n = V_0^{\star}(s_0) - V_0^{\pi^n}(s_0) \le \widehat{V}_0^n(s_0) - V_0^{\pi^n}(s_0)$$

$$\le \sum_h \mathbb{E}_{s,a \sim d_h^{\pi^n}} \left[b_h^n(s,a) + (\widehat{P}_h^n(\cdot | s,a) - P_h^{\star}(\cdot | s,a))^{\top} \widehat{V}_{h+1}^n \right]$$

If π^n is suboptimal, i.e., $V^*(s_0) - V^{\pi^n}(s_0)$ is large, then $\widehat{\pi}^n$ must visit some (s,a) pairs with large bonus b(s,a) or wrong $\widehat{P}(\cdot | s,a)$

Summary

1. Basics of MDPs:

Bellman Equation / Optimality; two planning algs: Value Iteration and Policy Iteration

2. Policy Gradient:

Vanilla PG formulation & Natural Policy Gradient with their global convergence

3. Efficient exploration in tabular MDPs:

The UCB-VI algorithm via the principle of optimism in the face of uncertainty