Statistical Foundations of Reinforcement Learning: I

COLT 2021

Akshay Krishnamurthy (MSR, akshaykr@microsoft.com)

Wen Sun (Cornell, ws455@cornell.edu)
Reinforcement Learning: Motivation and empirical progress

TD Gammon [Tesauro]

DeepMind Starcraft [Vinyals et.al]

Stratospheric balloons [Bellemare et.al]

OpenAI Dexterous manipulation [Akkaya et.al]
What is reinforcement learning?

Learning Agent

Determine action based on state

Environment
What is reinforcement learning?

Learning Agent

Determine action based on state

Send reward and next state

Environment
What is reinforcement learning?

Learning Agent

Determine action based on state

Multiple Steps

Send reward and next state

Environment
What is reinforcement learning?

Learning Agent

Determine action based on state

Multiple Steps

Send reward and next state

Environment
What is reinforcement learning?

Learning Agent

- Determine **action** based on **state**

Multiple Steps

Environment

- Send **reward** and **next state**
What is reinforcement learning?

Determine \textit{action} based on \textit{state}

Multiple Steps

Send \textit{reward} and \textit{next state}
What is reinforcement learning?

Learning Agent

Determine **action** based on **state**

Multiple Steps

Send **reward** and **next state**

Environment
Why is RL hard?

Credit Assignment

Exploration

Generalization
Why is RL hard?

- Credit Assignment
- Exploration
- Generalization

Policy search methods; Structured prediction; Imitation learning.

R=0.1
Why is RL hard?

- Credit Assignment
- Exploration
- Generalization
- Contextual Bandits

Policy search methods; Structured prediction; Imitation learning.
Why is RL hard?

Credit Assignment

Exploration

Generalization

Contextual Bandits

Policy search methods; Structured prediction; Imitation learning.

Tabular RL

R=0.1
Plan for the tutorial

Part 1: Tabular setting
1. Basics and key concepts
2. Policy optimization and Natural Policy Gradient
3. UCB-Value Iteration

Part 2: Problem set

Part 3: Function approximation + Exploration
1. Linear methods and complexity
2. Nonlinear methods, bellman rank, bilinear classes, representation learning
Part 1A: MDP Basics
Markov Decision Processes (Discounted version)

Learning Agent

- policy $\pi(a \mid s)$
- Determine **action** based on **state**
- Infinitely many steps
- Send **reward** and **next state**

$r(s, a), s' \sim P(\cdot \mid s, a)$

Environment

- $\mathcal{M} = \{S, A, P, r, \gamma, \mu\}$
- $\mu \in \Delta(S)$
- $P : S \times A \mapsto \Delta(S)$
- $r : S \times A \rightarrow [0,1]$
- $\gamma \in [0,1)$
Markov Decision Processes (Discounted version)

Learning Agent

| policy $\pi(a \mid s)$ |
| Determine action based on state |
| Infinitely many steps |
| Send reward and next state |
| $r(s, a), s' \sim P(\cdot \mid s, a)$ |

Environment

\[\mathcal{M} = \{ S, A, P, r, \gamma, \mu \} \]
\[\mu \in \Delta(S) \]
\[P : S \times A \mapsto \Delta(S) \]
\[r : S \times A \rightarrow [0,1] \]
\[\gamma \in [0,1) \]

Objective:

\[\max_{\pi} \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid s_0 \sim \mu, a_h \sim \pi(\cdot \mid s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h) \right] \]
Average State-action Distributions

Given a policy $\pi : S \mapsto \Delta(A)$

Denote $d_{\mu,h}^\pi(s,a) := P_\pi((s_h, a_h) = (s, a))$, i.e., probability of π hitting (s, a) at time step h
Average State-action Distributions

Given a policy $\pi : S \mapsto \Delta(A)$

Denote $d_{\mu,h}^{\pi}(s, a) := P_{\pi}((s_h, a_h) = (s, a))$, i.e., probability of π hitting (s, a) at time step h

Denote $d_{\mu}^{\pi}(s, a) := (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h d_{h}^{\pi}(s, a)$ as the average state-action distribution
Average State-action Distributions

Given a policy $\pi : S \mapsto \Delta(A)$

Denote $d_{\mu,h}^{\pi}(s,a) := P_{\pi}^{\pi} ((s_h, a_h) = (s, a))$, i.e., probability of π hitting (s, a) at time step h

Denote $d_{\mu}^{\pi}(s, a) := (1 - \gamma) \sum_{h=0}^{\infty} \gamma^h d_{\mu,h}^{\pi}(s, a)$ as the average state-action distribution

We will abuse notation a bit and denote $d_{\mu}^{\pi}(s) := \sum_a d_{\mu}^{\pi}(s, a)$ as the average state-distribution
Value functions and Bellman equations

Value function $V^\pi(s)$: total reward when starting in state s and following π afterwards
Value functions and Bellman equations

Value function $V^\pi(s)$: total reward when starting in state s and following π afterwards

$$V^\pi(s) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \middle| s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h) \right]$$
Value functions and Bellman equations

Value function $V^\pi(s)$: total reward when starting in state s and following π afterwards

$$V^\pi(s) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \bigg| s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot | s_h, a_h) \right]$$

$$= \mathbb{E}_{a \sim \pi(\cdot | s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^\pi(s') \right] \quad \text{(Bellman equation)}$$
Value functions and Bellman equations

Value function $V^\pi(s)$: total reward when starting in state s and following π afterwards

$$V^\pi(s) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \bigg| s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h) \right]$$

$$= \mathbb{E}_{a \sim \pi(\cdot | s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^\pi(s') \right]$$ (Bellman equation)

Q function $Q^\pi(s, a)$: total reward when starting in state s and action a and following π afterwards
Value functions and Bellman equations

Value function $V^\pi(s)$: total reward when starting in state s and following π afterwards

$$V^\pi(s) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \, \big| \, s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h) \right]$$

$$= \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^\pi(s') \right]$$

(Bellman equation)

Q function $Q^\pi(s, a)$: total reward when starting in state s and action a and following π afterwards

$$Q^\pi(s, a) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \, \big| \, (s_0, a_0) = (s, a), a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h) \right]$$
Value functions and Bellman equations

Value function $V^\pi(s)$: total reward when starting in state s and following π afterwards

$$V^\pi(s) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid s_0 = s, a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h) \right]$$

$$= \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^\pi(s') \right]$$ \hspace{1cm} (Bellman equation)

Q function $Q^\pi(s, a)$: total reward when starting in state s and action a and following π afterwards

$$Q^\pi(s, a) = \mathbb{E} \left[\sum_{h=0}^{\infty} \gamma^h r(s_h, a_h) \mid (s_0, a_0) = (s, a), a_h \sim \pi(s_h), s_{h+1} \sim P(\cdot \mid s_h, a_h) \right]$$

$$= r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^\pi(s')$$ \hspace{1cm} (Bellman equation)
Optimality

There exists a deterministic stationary policy $\pi^* : S \rightarrow A$, s.t.,

$$V^{\pi^*}(s) \geq V^{\pi}(s), \forall s, \pi$$
Optimality

There exists a deterministic stationary policy $\pi^* : S \mapsto A$, s.t.,

$$V^{\pi^*}(s) \geq V^\pi(s), \forall s, \pi$$

We denote $V^* := V^{\pi^*}, Q^* := Q^{\pi^*}$
Optimality

There exists a deterministic stationary policy $\pi^* : S \mapsto A$, s.t.,

$$V^\pi^*(s) \geq V^\pi(s), \forall s, \pi$$

We denote $V^* := V^\pi^*, Q^* := Q^\pi^*$

Theorem 1: Bellman Optimality

$$\forall s, a : \quad Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \max_{a'} Q^*(s', a')$$
Optimality

There exists a deterministic stationary policy $\pi^* : S \mapsto A$, s.t.,

$$V^{\pi^*}(s) \geq V^\pi(s), \forall s, \pi$$

We denote $V^* := V^{\pi^*}$, $Q^* := Q^{\pi^*}$

Theorem 1: Bellman Optimality

$$\forall s, a : Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \max_{a'} Q^*(s', a')$$

Theorem 2: Bellman Optimality

For any $Q : S \times A \to \mathbb{R}$, if $Q(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} \max_{a'} Q(s', a')$

for all s, a, then $Q(s, a) = Q^*(s, a), \forall s, a$
Planning in MDP with known transition P and reward r

i.e., how to compute π^* (and V^*/Q^*) given the MDP (P, r)
MDP Planning: Value iteration

Idea: fixed point iteration

Define: Bellman operator $\mathcal{T} : (S \times A \to \mathbb{R}) \to (S \times A \to \mathbb{R})$

$$(\mathcal{T} f)_{s,a} := r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \left[\max_{a'} f(s',a') \right]$$
MDP Planning: Value iteration

Idea: fixed point iteration

Define: Bellman operator \(\mathcal{T} : (S \times A \to \mathbb{R}) \to (S \times A \to \mathbb{R}) \)

\[
(\mathcal{T} f)_{s,a} := r(s,a) + \gamma \mathbb{E}_{s' \sim P(.|s,a)} \left[\max_{a'} f(s',a') \right]
\]

VI Algorithm: Initialize \(Q^{(0)} s.t. \), \(Q^{(0)}(s,a) \in [0,1/(1 - \gamma)] \)

Iterate \(Q^{(t+1)} \leftarrow \mathcal{T} Q^{(t)} \)
MDP Planning: Value iteration

Idea: fixed point iteration

Define: Bellman operator \(\mathcal{T} : (S \times A \to \mathbb{R}) \to (S \times A \to \mathbb{R}) \)

\[
(\mathcal{T} f)_{s,a} := r(s, a) + \gamma \mathbb{E}_{s' \sim P(.|s,a)}[\max_{a'} f(s', a')]
\]

VI Algorithm: Initialize \(Q^{(0)} \) s.t., \(Q^{(0)}(s, a) \in [0, 1/(1 - \gamma)] \)

Iterate \(Q^{(t+1)} \leftarrow \mathcal{T} Q^{(t)} \)

Theorem: Induced policy \(\pi^{(t)} : s \mapsto \arg\max_a Q^{(t)}(s, a) \) satisfies

\[
V^{\pi^{(t)}}(s) \geq V^*(s) - \frac{2\gamma^t}{1 - \gamma} \|Q^{(0)} - Q^*\|_\infty \quad \forall s \in S
\]
MDP Planning: Value iteration

Idea: fixed point iteration

Define: Bellman operator \(\mathcal{T} : (S \times A \to \mathbb{R}) \to (S \times A \to \mathbb{R}) \)

\[
(\mathcal{T}f)_{s,a} := r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)}[\max_{a'} f(s', a')]
\]

VI Algorithm: Initialize \(Q^{(0)} \) s.t., \(Q^{(0)}(s, a) \in [0, 1/(1 - \gamma)] \)

Iterate \(Q^{(t+1)} \leftarrow \mathcal{T} Q^{(t)} \)

Contraction lemma

\[
\|\mathcal{T} Q - \mathcal{T} Q'\|_\infty \leq \gamma \|Q - Q'\|_\infty
\]

Theorem: Induced policy \(\pi^{(t)} : s \mapsto \arg \max_a Q^{(t)}(s, a) \) satisfies

\[
V^{\pi^{(t)}}(s) \geq V^*(s) - \frac{2\gamma^t}{1 - \gamma} \|Q^{(0)} - Q^*\|_\infty \quad \forall s \in S
\]
MDP Planning: Policy iteration

Idea: Alternate between policy evaluation and policy improvement

Initialize $\pi^{(0)} : S \rightarrow A$

Repeat:

- Compute $Q^{\pi^{(t)}}$ (evaluation)

- Update $\pi^{(t+1)} : \pi^{(t+1)}(s) = \arg \max_a Q^{\pi^{(t)}}(s, a)$ (improvement)
MDP Planning: Policy iteration

Idea: Alternate between policy evaluation and policy improvement

Initialize $\pi^{(0)} : S \rightarrow A$

Repeat:

- Compute $Q^{\pi^{(t)}}$ (evaluation)
- Update $\pi^{(t+1)} : \pi^{(t+1)}(s) = \arg \max_a Q^{\pi^{(t)}}(s, a)$ (improvement)

Linear system solve
MDP Planning: Policy iteration

Idea: Alternate between policy evaluation and policy improvement

Initialize $\pi^{(0)} : S \rightarrow A$

Repeat:

- Compute $Q^{\pi^{(t)}}$ (evaluation)
- Update $\pi^{(t+1)} : \pi^{(t+1)}(s) = \arg \max_a Q^{\pi^{(t)}}(s, a)$ (improvement)

Theorem: Geometric convergence:

$$\|V^{\pi^{(t+1)}} - V^*\|_\infty \leq \gamma \|V^{\pi^{(t)}} - V^*\|_\infty$$
Finite Horizon MDPs

\[\mathcal{M} = \{ S, A, P, r, \mu, H \} \]

\[P : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0,1], \quad H \in \mathbb{N}^+, \quad \mu \in \Delta(S) \]

time-dependent policies: \(\pi^* := \{ \pi^*_0, \ldots, \pi^*_{H-1} \} \)

time-dependent V/Q functions: \(\{ V_h^* \}_{h=0}^{H-1}, \{ Q_h^* \}_{h=0}^{H-1} \)
Finite Horizon MDPs

\[\mathcal{M} = \{S, A, P, r, \mu, H\} \]

\[P : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0,1], \quad H \in \mathbb{N}^+, \quad \mu \in \Delta(S) \]

Episode:

\[s_0 \sim \mu \]

For \(h = 0, \ldots, H - 1 \):

- Take action \(a_h \)
- Collect reward \(r(s_h, a_h) \)
- Transition \(s_{h+1} \sim P(\cdot | s_h, a_h) \)

time-dependent policies: \(\pi^*: = \{\pi^*_0, \ldots, \pi^*_H\} \)

time-dependent V/Q functions: \(\{V^*_h\}_h^{H-1}, \{Q^*_h\}_h^{H-1} \)
Finite Horizon MDPs

\[\mathcal{M} = \{ S, A, P, r, \mu, H \} \]

\[P : S \times A \mapsto \Delta(S), \quad r : S \times A \to [0,1], \quad H \in \mathbb{N}^+, \quad \mu \in \Delta(S) \]

Episode:

\[s_0 \sim \mu \]

For \(h = 0, \ldots, H - 1 \):

- Take action \(a_h \)
- Collect reward \(r(s_h, a_h) \)
- Transition \(s_{h+1} \sim P(\cdot \mid s_h, a_h) \)

Objective function: \(V(\pi) = \mathbb{E} \left[\sum_{h=0}^{H-1} r(s_h, a_h) \right] \)

time-dependent policies: \(\pi^* := \{ \pi_0^*, \ldots, \pi_{H-1}^* \} \)

time-dependent V/Q functions: \(\{ V_h^* \}_{h=0}^{H-1}, \{ Q_h^* \}_{h=0}^{H-1} \)
Summary so far:

MDP definitions (discounted infinite horizon & finite horizon);
State-action distributions, value and Q functions, and two planning algorithms
Part 1B: Policy Gradient & Natural Policy Gradient
Policy Optimization Motivation: Practical

[AlphaZero, Silver et.al, 17] [OpenAI Five, 18] [OpenAI, 19]
Policy Optimization Motivation: Simple

\[\pi_\theta(a \mid s) := \pi(a \mid s; \theta) \quad V^{\pi_\theta} = \mathbb{E}_{\pi_\theta} \left[\sum_{h=0}^{\infty} \gamma^h r_h \right] \]

\[\theta_{t+1} = \theta_t + \eta \nabla_\theta V^{\pi_\theta}|_{\theta=\theta_t} \]
Policy Optimization Motivation: Simple

\[\pi_\theta(a \mid s) := \pi(a \mid s; \theta) \quad V^{\pi_\theta} = \mathbb{E}_{\pi_\theta} \left[\sum_{h=0}^{\infty} \gamma^h r_h \right] \]

\[\theta_{t+1} = \theta_t + \eta \nabla_{\theta} V^{\pi_\theta} \big|_{\theta=\theta_t} \]

We can have a closed-form expression for PG:

\[\nabla_{\theta} V^{\pi_\theta} = \frac{1}{1 - \gamma} \mathbb{E}_{s,a \sim d^{\pi_\theta}_\mu} \left[\nabla_{\theta} \ln \pi_\theta(a \mid s) A^{\pi_\theta}(s,a) \right] \]

Policy Gradient Theorem [Sutton, McAllester, Singh, Mansour]:

Define advantage function \(A^{\pi_\theta}(s, a) := Q^{\pi_\theta}(s, a) - V^{\pi_\theta}(s) \), we have:
Policy Optimization Motivation: Simple

$$\pi_\theta(a \mid s) := \pi(a \mid s; \theta) \quad V^{\pi_\theta} = \mathbb{E}_{\pi_\theta} \left[\sum_{h=0}^{\infty} \gamma^h r_h \right]$$

$$\theta_{t+1} = \theta_t + \eta \nabla_\theta V^{\pi_\theta} |_{\theta=\theta_t}$$

We can have a closed-form expression for PG:

Policy Gradient Theorem [Sutton, McAllester, Singh, Mansour]:

Define advantage function $A^{\pi_\theta}(s, a) := Q^{\pi_\theta}(s, a) - V^{\pi_\theta}(s)$, we have:

$$\nabla_\theta V^{\pi_\theta} = \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d^\pi_\theta} \left[\nabla_\theta \ln \pi_\theta(a \mid s) A^{\pi_\theta}(s, a) \right]$$

Adjust the probability $\pi_\theta(a \mid s)$ proportional to $A^{\pi_\theta}(s, a) := Q^{\pi_\theta}(s, a) - V^{\pi_\theta}(s)$
Global optimality of Policy Gradient methods

Consider tabular MDPs, with $\pi_{\theta}(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$, $\theta_{s,a} \in \mathbb{R}$
Global optimality of Policy Gradient methods

Consider tabular MDPs, with $\pi_\theta(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$, $\theta_{s,a} \in \mathbb{R}$

PG formulation:

$$\frac{\partial V(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d^\pi_\mu(s) \pi_\theta(a \mid s) A^{\pi_\theta}(s, a), \text{ where } A^{\pi_\theta}(s, a) = Q^{\pi_\theta}(s, a) - V^{\pi_\theta}(s)$$
Global optimality of Policy Gradient methods

Consider tabular MDPs, with \(\pi_\theta(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})} \), \(\theta_{s,a} \in \mathbb{R} \)

PG formulation:

\[
\frac{\partial V(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d^\mu(s) \pi_\theta(a \mid s) A^\pi_\theta(s, a), \text{ where } A^\pi_\theta(s, a) = Q^\pi_\theta(s, a) - V^\pi_\theta(s)
\]

Despite being non-concave, we have global convergence:
Global optimality of Policy Gradient methods

Consider tabular MDPs, with $\pi_\theta(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}, \theta_{s,a} \in \mathbb{R}$

PG formulation:

$$\frac{\partial V(\theta)}{\partial \theta_{s,a}} = \frac{1}{1 - \gamma} d^\pi_\mu(s)\pi_\theta(a \mid s) A^{\pi_\theta}(s, a), \text{ where } A^{\pi_\theta}(s, a) = Q^{\pi_\theta}(s, a) - V^{\pi_\theta}(s)$$

Despite being non-concave, we have global convergence:

Theorem (Informal) [Agarwal, Kakade, Lee, Mahajan 20; Mei, Xiao, Szepesvari, Schuurmans 20]:

Assume $\mu(s) > 0, \forall s$, the PG algorithm $\theta^{t+1} := \theta^t + \eta \nabla_\theta V(\theta) |_{\theta = \theta^t}$ converges to global optimality
Policy optimization: Natural Policy Gradient

[Kakade 03]
Policy optimization: Natural Policy Gradient

[Kakade 03]

Define Fisher information matrix

$$F_\theta = \mathbb{E}_{s,a \sim \pi_\theta} \left[\nabla_\theta \ln \pi_\theta(a | s) \left(\nabla_\theta \ln \pi_\theta(a | s) \right)^T \right] \in \mathbb{R}^{d_\theta \times d_\theta}$$
Policy optimization: Natural Policy Gradient

[Kakade 03]

Define Fisher information matrix

\[
F_\theta = \mathbb{E}_{s,a \sim d_{\pi_\theta}} \left[\nabla_\theta \ln \pi_\theta(a \mid s) \left(\nabla_\theta \ln \pi_\theta(a \mid s) \right)^\top \right] \in \mathbb{R}^{d_\theta \times d_\theta}
\]

Natural policy gradient uses \(F_\theta \) to pre-condition PG:

\[
\theta^{t+1} := \theta^t + \eta F^{-1}_\theta \nabla_\theta V(\theta) \big|_{\theta = \theta^t}
\]
Policy optimization: Natural Policy Gradient

[Kakade 03]

Define Fisher information matrix

$$F_\theta = \mathbb{E}_{s,a \sim d_{\pi_\theta}} \left[\nabla_\theta \ln \pi_\theta(a \mid s) \left(\nabla_\theta \ln \pi_\theta(a \mid s) \right)^T \right] \in \mathbb{R}^{d_\theta \times d_\theta}$$

Natural policy gradient uses F_θ to pre-condition PG:

$$\theta^{t+1} := \theta^t + \eta F_\theta^{-1} \nabla_\theta V(\theta) \mid_{\theta=\theta^t}$$

(For simplicity, assume F_θ is full rank — otherwise use pseudo inverse)
The trust region optimization interpretation of NPG

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

$$\max_\theta \langle \theta, \nabla_\theta V(\theta) \mid \theta = \theta_0 \rangle, \text{ s.t., } KL (\rho_{\theta} \mid \mid \rho_0) \leq \delta$$

$$\rho_{\theta} (\tau) := \mu(s_0) \prod_{h} \pi(a_h \mid s_h) P(s_{h+1} \mid s_h, a_h)$$
The trust region optimization interpretation of NPG

NPG as a Trust-region optimization procedure:

\[
\max_{\theta} \langle \theta, \nabla_{\theta} V(\theta) \mid_{\theta=\theta^t} \rangle, \text{ s.t., } KL(\rho_{\theta^t} \mid \mid \rho_\theta) \leq \delta
\]

i.e., optimize the linearized objective s.t. a KL constraint forcing new policy's trajectory distribution staying close to old one's

[Bagnell & Schneider 03]
The trust region optimization interpretation of NPG

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

$$\max_{\theta} \langle \theta, \nabla_\theta V(\theta) |_{\theta=\theta^t} \rangle, \text{ s.t., } KL \left(\rho_{\theta^t} \mid \mid \rho_\theta \right) \leq \delta$$

$$\left(\rho_{\theta}(\tau) := \mu(s_0) \prod_h \pi(a_h \mid s_h) P(s_{h+1} \mid s_h, a_h) \right)$$

i.e., optimize the **linearized objective** s.t. a KL constraint **forcing new policy's trajectory distribution staying close to old one's**

Further perform second-order Taylor expansion on $KL \left(\rho_{\theta^t} \mid \mid \rho_\theta \right)$ at θ^t:
The trust region optimization interpretation of NPG

[Bagnell & Schneider 03]

NPG as a Trust-region optimization procedure:

\[
\max_\theta \langle \theta, \nabla_\theta V(\theta) \mid \theta=\theta^t \rangle, \text{ s.t., } KL \left(\rho_{\theta^t} \mid \mid \rho_\theta \right) \leq \delta
\]

\[
\left(\rho_{\theta}(\tau) := \mu(s_0) \prod_h \pi(a_h \mid s_h)P(s_{h+1} \mid s_h, a_h) \right)
\]

i.e., optimize the **linearized objective** s.t. a KL constraint **forcing new policy's trajectory distribution staying close to old one's**

Further perform second-order Taylor expansion on \(KL \left(\rho_{\theta^t} \mid \mid \rho_\theta \right) \) at \(\theta^t \):

\[
KL \left(\rho_{\theta^t} \mid \mid \rho_\theta \right) \approx (\theta - \theta^t)^\top F_{\theta^t}(\theta - \theta^t)
\]
The trust region optimization interpretation of NPG

NPG as a Trust-region optimization procedure:

$$\max_{\theta} \langle \theta, \nabla_{\theta} V(\theta) |_{\theta=\theta^t} \rangle, \text{ s.t., } KL \left(\rho_{\theta^t} \mid \mid \rho_{\theta} \right) \leq \delta$$

$$\left(\rho_{\theta}(\tau) := \mu(s_0) \prod_h \pi(a_h | s_h)P(s_{h+1} | s_h, a_h) \right)$$

i.e., optimize the linearized objective s.t. a KL constraint forcing new policy's trajectory distribution staying close to old one's

Further perform second-order Taylor expansion on $KL \left(\rho_{\theta^t} \mid \mid \rho_{\theta} \right)$ at θ^t:

$$KL \left(\rho_{\theta^t} \mid \mid \rho_{\theta} \right) \approx (\theta - \theta^t)^\top F_{\theta^t}(\theta - \theta^t)$$

NPG then is revealed by solving the convex program:

$$\max_{\theta} \langle \theta, \nabla_{\theta} V(\theta) |_{\theta=\theta^t} \rangle, \text{ s.t., } (\theta - \theta^t)^\top F_{\theta^t}(\theta - \theta^t) \leq \delta$$

[Bagnell & Schneider 03]
Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

\[\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A \quad \pi_{\theta}(a | s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})} \]
Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

$$\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A \quad \pi_{\theta}(a | s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$

We can show that the NPG update $\theta^{t+1} := \theta^t + \eta F_{\theta^t}^{-1} \nabla_{\theta} V(\theta^t)$ is equivalent to (see the exercise in recitation):
Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

$$\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A \quad \pi_\theta(a \mid s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$

We can show that the NPG update $\theta^{t+1} := \theta^t + \eta F_{\theta^t}^{-1} \nabla_\theta V(\theta^t)$ is equivalent to (see the exercise in recitation):

$$(\pi^t := \pi_\theta) \quad \pi^{t+1}(a \mid s) \propto \pi^t(a \mid s) \cdot \exp \left(\eta A^{\pi^t}(s, a) \right)$$
Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

$$\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A \quad \pi_{\theta}(a | s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$

We can show that the NPG update $\theta^{t+1} := \theta^t + \eta F_{\theta^t}^{-1} \nabla_{\theta} V(\theta^t)$ is equivalent to (see the exercise in recitation):

$$(\pi^t := \pi_{\theta^t}) \quad \pi^{t+1}(a | s) \propto \pi^t(a | s) \cdot \exp \left(\eta A^\pi(s, a) \right)$$

Proof sketch: $A^{\pi_{\theta^t}}(\cdot, \cdot) \propto \arg \min_x \| \nabla_{\theta} V(\theta^t) - F_{\theta^t}^x \|^2_2$ (see recitation for details)
Natural policy gradient in Tabular MDPs

Recall the softmax Policy for Tabular MDPs:

\[\theta_{s,a} \in \mathbb{R}, \forall s, a \in S \times A \quad \pi_\theta(a | s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})} \]

We can show that the NPG update \(\theta^{t+1} := \theta^t + \eta F_{\theta^t}^{-1} \nabla_{\theta} V(\theta^t) \) is equivalent to (see the exercise in recitation):

\[(\pi^t := \pi_{\theta^t}) \quad \pi^{t+1}(a | s) \propto \pi^t(a | s) \cdot \exp \left(\eta A^{\pi^t}(s, a) \right) \]

Proof sketch: \(A^{\pi_{\theta^t}}(\cdot, \cdot) \propto \arg \min_x \| \nabla_{\theta} V(\theta^t) - F_{\theta^{t+1}} x \|_2^2 \) (see recitation for details)

Interpretation: for each state \(s \), NPG runs online mirror ascent with \(A^{\pi^t}(s, \cdot) \in \mathbb{R}^{|A|} \) as the reward vector at iter \(t \)
Global Convergence of the exact Natural policy gradient

\[\pi^{t+1}(a \mid s) \propto \pi^t(a \mid s) \cdot \exp\left(\eta A^{\pi^t}(s, a) \right) \]

(Note here we are studying the idealized case where we have exact \(A^{\pi^t}(\cdot, \cdot) \). We will look into learning/approximation in the recitation)
Global Convergence of the exact Natural policy gradient

\[\pi^{t+1}(a \mid s) \propto \pi^t(a \mid s) \cdot \exp\left(\eta A \pi^t(s, a) \right) \]

(Note here we are studying the idealized case where we have exact \(A^\pi(\cdot, \cdot) \).
We will look into learning/approximation in the recitation)

Theorem [Agarwal, Kakade, Lee, Mahajan 20]: Initialize \(\pi^0(\cdot \mid s) = \text{Unif}(A) \). After \(T \) iterations, there exits a policy \(\pi \in \{ \pi^0, \ldots, \pi^{T-1} \} \), s.t.,

\[V^\pi \geq V^* - \frac{\log A}{\eta T} - \frac{1}{(1 - \gamma)^2 T}. \]
Global Convergence of the exact Natural policy gradient

\[\pi^{t+1}(a \mid s) \propto \pi^t(a \mid s) \cdot \exp \left(\eta A \pi^t(s, a) \right) \]

(Note here we are studying the idealized case where we have exact \(A^\pi(\cdot, \cdot) \). We will look into learning/approximation in the recitation)

Theorem [Agarwal, Kakade, Lee, Mahajan 20]: Initialize \(\pi^0(\cdot \mid s) = \text{Unif}(A) \). After \(T \) iterations, there exits a policy \(\pi \in \{ \pi^0, \ldots, \pi^{T-1} \} \), s.t.,

\[V_\pi \geq V^\star - \frac{\log A}{\eta T} - \frac{1}{(1 - \gamma)^2 T}. \]

- Global optimality despite non-concavity in the objective
- No \(|S| \) dependence at all; log-dependence on \(|A|\)
- No coverage requirement on the initial distribution \(\mu \)
Proof Sketch for NPG’s global optimality (a $1/\sqrt{T}$ rate)
Proof Sketch for NPG's global optimality (a $1/\sqrt{T}$ rate)

1. Since we run Mirror Ascent per state, we have that for all $s \in S$:
Proof Sketch for NPG’s global optimality (a $1/\sqrt{T}$ rate)

1. Since we run Mirror Ascent per state, we have that for all $s \in S$:

$$\sum_{t=0}^{T-1} \langle \pi^*(\cdot \mid s), A^\pi(s, \cdot) \rangle - \langle \pi^t(\cdot \mid s), A^\pi(s, \cdot) \rangle \leq \sqrt{\ln(|A|)T}.$$
Proof Sketch for NPG’s global optimality (a $1/\sqrt{T}$ rate)

1. Since we run Mirror Ascent per state, we have that for all $s \in S$:

$$\sum_{t=0}^{T-1} \langle \pi^*(\cdot | s), A^{\pi^t}(s, \cdot) \rangle - \langle \pi^t(\cdot | s), A^{\pi^t}(s, \cdot) \rangle \leq \sqrt{\ln(|A|)T}.$$

regret of mirror ascent on s

2. Add $\mathbb{E}_{s \sim d_{\mu^*}}$ on both sides, and via performance difference lemma [Kakade & Langford 2003]:

$$\sum_{t=0}^{T-1} V^{\pi^*} - V^{\pi^t} \propto \sum_{t=0}^{T-1} \mathbb{E}_{s \sim d_{\mu^*}} \left[\mathbb{E}_{a \sim \pi^*(\cdot | s)} A^{\pi^t}(s, a) \right] \lesssim \sqrt{\ln(|A|)T}.$$
Proof Sketch for NPG’s global optimality (a $1/\sqrt{T}$ rate)

1. Since we run Mirror Ascent per state, we have that for all $s \in S$:
\[
\sum_{t=0}^{T-1} \langle \pi^*(\cdot | s), A^{\pi'}(s, \cdot) \rangle - \langle \pi^t(\cdot | s), A^{\pi'}(s, \cdot) \rangle \lesssim \sqrt{\ln(|A|)T}.
\]

regret of mirror ascent on s

2. Add $\mathbb{E}_{s \sim d_{\pi^*}}$ on both sides, and via performance difference lemma [Kakade & Langford 2003]:
\[
\sum_{t=0}^{T-1} V^{\pi^*} - V^{\pi'} \propto \sum_{t=0}^{T-1} \mathbb{E}_{s \sim d_{\pi^*}^{\pi^t}} \left[\mathbb{E}_{a \sim \pi^*(\cdot | s)} A^{\pi'}(s, a) \right] \lesssim \sqrt{\ln(|A|)T}.
\]

(see the exercise in recitation for a detailed proof with approximation on Q^{π^t}, and see chapter 10 in AJKS monograph for the proof for $1/T$ rate)
Summary so far:

Policy Gradient and NPG:

Global Convergence vanilla PG and NPG in tabular MDPs with softmax parameterization

NPG w/ approximation in Recitation
Part 1C: Exploration in tabular MDP w/ UCB-Value Iteration
In this part:

Question: how to explore efficient if we do not know \((P, r)\)
We need to perform efficient exploration when learning:

The combination lock problem:

Initial state s_0
We need to perform efficient exploration when learning:

The combination lock problem:

The prob of a random walk reaching the goal is exponentially small wrt H
We need to perform efficient exploration when learning:

The combination lock problem:

The prob of a random walk reaching the goal is exponentially small wrt H

The principle behind UCB-VI: Optimism in the face of uncertainty
Problem setup, learning protocol, and goal

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s_0

transitions $\{P_h\}_{h=0}^{H-1}$ unknown, but reward $r(s, a)$ known

learning protocol:

Goal:
Problem setup, learning protocol, and goal

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s_0

Transitions $\{P_h\}_{h=0}^{H-1}$ unknown, but reward $r(s, a)$ known

learning protocol:

1. Learner initializes a policy π^0

Goal:
Problem setup, learning protocol, and goal

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s_0

transitions $\{P_h\}_{h=0}^{H-1}$ unknown, but reward $r(s, a)$ known

learning protocol:

1. Learner initializes a policy π^0

2. At episode n, learner executes π^n to draw a trajectory starting at s_0:
 $\{s_h^n, a_h^n, r_h^n\}_{h=0}^{H-1}$, with $a_h^n = \pi^n(s_h^n), r_h^n = r(s_h^n, a_h^n), s_{h+1}^n \sim P(\cdot \mid s_h^n, a_h^n)$

Goal:
Problem setup, learning protocol, and goal

Setting: episodic finite horizon tabular MDP (horizon = H), fixed initial state s_0

transitions $\{P_h\}_{h=0}^{H-1}$ unknown, but reward $r(s, a)$ known

learning protocol:

1. Learner initializes a policy π^0

2. At episode n, learner executes π^n to draw a trajectory starting at s_0:
 $\{s^n_h, a^n_h, r^n_h\}_{h=0}^{H-1}$, with $a^n_h = \pi^n(s^n_h)$, $r^n_h = r(s^n_h, a^n_h)$, $s_{h+1}^n \sim P(\cdot | s_h^n, a_h^n)$

3. Learner updates policy to π^{n+1} using all prior information

Goal:
Problem setup, learning protocol, and goal

Setting: episodic finite horizon tabular MDP (horizon = \(H \)), fixed initial state \(s_0 \)

transitions \(\{P_h\}_{h=0}^{H-1} \) unknown, but reward \(r(s, a) \) known

learning protocol:

1. Learner initializes a policy \(\pi^0 \)

2. At episode \(n \), learner executes \(\pi^n \) to draw a trajectory starting at \(s_0 \):

\[
\{s_h^n, a_h^n, r_h^n\}_{h=0}^{H-1}, \text{ with } a_h^n = \pi^n(s_h^n), r_h^n = r(s_h^n, a_h^n), s_{h+1}^n \sim P(\cdot | s_h^n, a_h^n)
\]

3. Learner updates policy to \(\pi^{n+1} \) using all prior information

Goal:

Sub-linear regret:

\[
\mathbb{E} \left[\sum_{n=1}^{N} (V^* - V^{\pi^n}) \right] = \text{poly}(S, A, H)\sqrt{N}
\]
UCBVI: Optimistic Model-based Learning

Inside iteration n:
UCBVI: Optimistic Model-based Learning

Inside iteration n:

Use all previous data to estimate transitions $\hat{P}_0^n, \ldots, \hat{P}_{H-1}^n$.
UCBVI: Optimistic Model-based Learning

Inside iteration \(n \):

Use all previous data to estimate transitions \(\hat{P}^n_0, \ldots, \hat{P}^n_{H-1} \)

Design reward bonus \(b^n_h(s, a), \forall s, a, h \)
UCBVI: Optimistic Model-based Learning

Inside iteration n:

Use all previous data to estimate transitions $\hat{P}_0^n, \ldots, \hat{P}_{H-1}^n$.

Design reward bonus $b_h^n(s, a), \forall s, a, h$.

Optimistic planning with learned model: $\pi^n = \text{Value-Iter} \left(\{ \hat{P}_h^n, r_h + b_h^n \}_{h=1}^{H-1} \right)$.
UCBVI: Optimistic Model-based Learning

Inside iteration n:

Use all previous data to estimate transitions $\hat{P}_0^n, \ldots, \hat{P}_{H-1}^n$.

Design reward bonus $b_h^n(s, a), \forall s, a, h$.

Optimistic planning with learned model: $\pi^n = \text{Value-Iter} \left(\{ \hat{P}_h^n, r_h + b_h^n \}_{h=1}^{H-1} \right)$

Collect a new trajectory by executing π^n in the real world $\{P_h\}_{h=0}^{H-1}$ starting from s_0.

Let us consider the very beginning of episode n:

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h$$
UCBVI—Part 1: Model Estimation

Let us consider the very beginning of episode n:

$$\mathcal{D}_h^n = \{ s_h^i, a_h^i, s_{h+1}^i \}_{i=1}^{n-1}, \forall h$$

Let’s also maintain some statistics using these datasets:
Let us consider the very beginning of episode n:

$$\mathcal{D}_h^n = \{s^i_h, a^i_h, s^i_{h+1}\}_{i=1}^{n-1}, \forall h$$

Let’s also maintain some statistics using these datasets:

$$N^n_h(s, a) = \sum_{i=1}^{n-1} 1\{(s^i_h, a^i_h) = (s, a)\}, \forall s, a, h, \quad N^n_h(s, a, s') = \sum_{i=1}^{n-1} 1\{(s^i_h, a^i_h, s^i_{h+1}) = (s, a, s')\}, \forall s, a, h$$
Let us consider the very beginning of episode n:

$$\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h$$

Let’s also maintain some statistics using these datasets:

$$N_h^n(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h,$$
$$N_h^n(s, s') = \sum_{i=1}^{n-1} \mathbf{1}\{(s_h^i, a_h^i, s_{h+1}^i) = (s, a, s')\}, \forall s, a, h$$

Estimate model $\hat{P}_h^n(s' | s, a), \forall s, a, s', h$ (i.e., MLE):

$$\hat{P}_h^n(s' | s, a) = \frac{N_h^n(s, a, s')}{N_h^n(s, a)}$$
Let us consider the very beginning of episode n:

$$
\mathcal{D}_h^n = \{s^i_h, a^i_h, s^{i+1}_h\}_{i=1}^{n-1}, \forall h, \quad N_h^n(s, a) = \sum_{i=1}^{n-1} 1\{(s^i_h, a^i_h) = (s, a)\}, \forall s, a, h,
$$
Let us consider the very beginning of episode n:

$$\mathcal{D}_n^h = \{s^i_h, a^i_h, s^i_{h+1}\}_{i=1}^{n-1}, \forall h, \quad N^n_h(s, a) = \sum_{i=1}^{n-1} 1\{(s^i_h, a^i_h) = (s, a)\}, \forall s, a, h,$$

$$b^n_h(s, a) = cH \sqrt{\frac{\ln (SAHN/\delta)}{N^n_h(s, a)}}$$

UCBVI—Part 2: Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode n:

$$\mathcal{D}_h^n = \{(s_h^i, a_h^i, s_{h+1}^i)\}_{i=1}^{n-1}, \quad \forall h,$$

$$N_h^n(s, a) = \sum_{i=1}^{n-1} 1\{(s_h^i, a_h^i) = (s, a)\}, \quad \forall s, a, h,$$

$$b_h^n(s, a) = c H \sqrt{\frac{\ln{(SAHN/\delta)}}{N_h^n(s, a)}}$$

Encourage to explore new state-actions.
Let us consider the very beginning of episode n:

$$
\mathcal{D}^n_h = \{s^i_h, a^i_h, s^i_{h+1}\}^n_{i=1}, \forall h, \quad N^n_h(s, a) = \sum_{i=1}^{n-1} 1\{(s^i_h, a^i_h) = (s, a)\}, \forall s, a, h,
$$

$$
b^n_h(s, a) = cH \sqrt{\frac{\ln (SAHN/\delta)}{N^n_h(s, a)}}
$$

Encourage to explore new state-actions

Value Iteration (aka DP) at episode n using \{\(P^n_h\)\}_h and \(\{r_h + b^n_h\}_h\)
Let us consider the very beginning of episode n:

$$\mathcal{D}_n = \{s^i_h, a^i_h, s^i_{h+1}\}_{i=1}^{n-1}, \forall h, \quad N^n_h(s, a) = \sum_{i=1}^{n-1} 1\{ (s^i_h, a^i_h) = (s, a) \}, \forall s, a, h,$$

$$b^n_h(s, a) = cH \sqrt{\frac{\ln (SAHN/\delta)}{N^n_h(s, a)}}$$
Encourage to explore new state-actions

Value Iteration (aka DP) at episode n using $\{ \hat{P}^n_h \}_h$ and $\{ r_h + b^n_h \}_h$

$$\hat{V}^n_H(s) = 0, \forall s$$
Let us consider the very beginning of episode n:

$$
\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, \quad N_h^n(s, a) = \sum_{i=1}^{n-1} 1\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h,
$$

$$
b_h^n(s, a) = cH \sqrt{\frac{\ln (SAHN/\delta)}{N_h^n(s, a)}}
$$

Encourage to explore new state-actions

Value Iteration (aka DP) at episode n using $\{\widehat{P}_h^n\}_h$ and $\{r_h + b_h^n\}_h$

$$
\widehat{V}_H^n(s) = 0, \forall s \quad \widehat{Q}_h^n(s, a) = \min \left\{ r_h(s, a) + b_h^n(s, a) + \widehat{P}_h^n(\cdot | s, a) \cdot \widehat{V}_{h+1}^n, \quad H \right\}, \forall s, a
$$
Let us consider the very beginning of episode n:

$$
\mathcal{D}_h^n = \{s_h^i, a_h^i, s_{h+1}^i\}_{i=1}^{n-1}, \forall h, \quad N_h^n(s, a) = \sum_{i=1}^{n-1} 1\{(s_h^i, a_h^i) = (s, a)\}, \forall s, a, h,
$$

$$
b_h^n(s, a) = cH \sqrt{\frac{\ln (SAHN/\delta)}{N_h^n(s, a)}}
$$

Encourage to explore new state-actions

Value Iteration (aka DP) at episode n using $\{ \widehat{P}_h^n \}_h$ and $\{ r_h + b_h^n \}_h$

$$
\widehat{V}^n_H(s) = 0, \forall s \quad \widehat{Q}^n_h(s, a) = \min \left\{ r_h(s, a) + b_h^n(s, a) + \widehat{P}_h^n(\cdot | s, a) \cdot \widehat{V}^n_{h+1}, \quad H \right\}, \forall s, a
$$

$$
\widehat{V}^n_h(s) = \max_a \widehat{Q}^n_h(s, a), \quad \pi^n_h(s) = \arg \max_a \widehat{Q}^n_h(s, a), \forall s
$$
UCBVI—Part 2: Reward Bonus Design and Value Iteration

Let us consider the very beginning of episode n:

$$
\mathcal{D}_n = \{s^i_h, a^i_h, s^i_{h+1}\}_{i=1}^{n-1}, \forall h, \quad N^n_h(s, a) = \sum_{i=1}^{n-1} \mathbf{1}\{(s^i_h, a^i_h) = (s, a)\}, \forall s, a, h,
$$

$$
b^n_h(s, a) = cH \sqrt{\frac{\ln (SAHN/\delta)}{N^n_h(s, a)}}
$$
Encourage to explore new state-actions

Value Iteration (aka DP) at episode n using $\{\widehat{P}^n_h\}_h$ and $\{r_h + b^n_h\}_h$

$$
\widehat{V}^n_H(s) = 0, \forall s \quad \widehat{Q}^n_h(s, a) = \min \left\{ r_h(s, a) + b^n_h(s, a) + \widehat{P}^n_h(\cdot | s, a) \cdot \widehat{V}^n_{h+1}, \quad H \right\}, \forall s, a
$$

$$
\widehat{V}^n_h(s) = \max_a \widehat{Q}^n_h(s, a), \quad \pi^n_h(s) = \arg \max_a \widehat{Q}^n_h(s, a), \forall s \quad \|\widehat{V}^n_h\|_\infty \leq H, \forall h, n
$$
UCBVI: Put All Together

For $n = 1 \rightarrow N$:

1. Set $N^n_h(s, a) = \sum_{i=1}^{n-1} 1\{(s^i_h, a^i_h) = (s, a)\}, \forall s, a, h$

2. Set $N^n_h(s, a, s') = \sum_{i=1}^{n-1} 1\{(s^i_h, a^i_h, s^i_{h+1}) = (s, a, s')\}, \forall s, a, a', h$

3. Estimate $\hat{P}^n_h : \hat{P}^n_{h}(s'|s, a) = \frac{N^n_h(s, a, s')}{N^n_h(s, a)}, \forall s, a, s', h$

4. Plan: $\pi^n = VI \left(\{ \hat{P}^n_{h}, r_{h} + b^n_{h} \}_{h} \right)$, with $b^n_{h}(s, a) = cH\sqrt{\frac{\ln(SAHN/\delta)}{N^n_h(s, a)}}$

5. Execute $\pi^n : \{ s^n_0, a^n_0, r^n_0, \ldots, s^n_{H-1}, a^n_{H-1}, r^n_{H-1}, s^n_H \}$
Theorem: UCBVI Regret Bound

We will prove the following in the recitation:

\[\mathbb{E} \left[\text{Regret}_N \right] := \mathbb{E} \left[\sum_{n=1}^{N} (V^* - V^{\pi^n}) \right] \leq \widetilde{O}\left(H^2 \sqrt{S^2 AN} \right) \]
Theorem: UCBVI Regret Bound

We will prove the following in the recitation:

\[
\mathbb{E} \left[\text{Regret}_N \right] := \mathbb{E} \left[\sum_{n=1}^{N} (V^* - V^{\pi^n}) \right] \leq \widetilde{O} \left(H^2 \sqrt{S^2 AN} \right)
\]

Remarks:

Note that we consider expected regret here (policy \(\pi^n \) is a random quantity). High probability version is not hard to get (need to do a martingale argument).
Theorem: UCBVI Regret Bound

We will prove the following in the recitation:

\[\mathbb{E} \left[\text{Regret}_N \right] := \mathbb{E} \left[\sum_{n=1}^{N} (V^* - V^{\pi^n}) \right] \leq \tilde{O} \left(H^2 \sqrt{S^2 AN} \right) \]

Remarks:

Note that we consider expected regret here (policy \(\pi^n\) is a random quantity). High probability version is not hard to get (need to do a martingale argument)

Dependency on H and S are suboptimal; but the same algorithm can achieve \(H^2 \sqrt{SAN}\) in the leading term [Azar et.al 17 ICML]
Key Intuition behind the theorem:

VI at episode n under \(\{ \widehat{P}_h^n \}_h \) and \(\{ r_h + b_h^n \}_h \)

\[
\widehat{V}_n^H(s) = 0, \quad \forall s \\
\widehat{Q}_n^H(s, a) = \min \left\{ r_h(s, a) + b_h^n(s, a) + \widehat{P}_h^n(\cdot | s, a) \cdot \widehat{V}_{h+1}^n, \quad H \right\}, \quad \forall s, a \\
\widehat{V}_h^n(s) = \max_a \widehat{Q}_h^n(s, a), \quad \pi_h^n(s) = \arg \max_a \widehat{Q}_h^n(s, a), \quad \forall s
\]
Key Intuition behind the theorem:

VI at episode n under \(\{ \widehat{P}_h^n \}_h \) and \(\{ r_h + b_h^n \}_h \)

\[
\widehat{V}_H^n(s) = 0, \forall s \quad \widehat{Q}_h^n(s, a) = \min \left\{ r_h(s, a) + b_h^n(s, a) + \widehat{P}_h^n(\cdot | s, a) \cdot \widehat{V}_{h+1}^n, H \right\}, \forall s, a
\]

\[
\widehat{V}_h^n(s) = \max_a \widehat{Q}_h^n(s, a), \quad \pi_h^n(s) = \arg \max_a \widehat{Q}_h^n(s, a), \forall s
\]

Key lemma 1: optimism — our bonus is large enough s.t. \(\widehat{V}_h^n(s) \geq V_h^*(s), \forall s, h \)
Key Intuition behind the theorem:

VI at episode n under $\{\hat{P}^n_h\}_h$ and $\{r_h + b^n_h\}_h$

$$\hat{V}^n_H(s) = 0, \forall s \quad \hat{Q}^n_h(s, a) = \min \left\{ r_h(s, a) + b^n_h(s, a) + \hat{P}^n_h(\cdot \mid s, a) \cdot \hat{V}^{n+1}_h, \quad H \right\}, \forall s, a$$

$$\hat{V}^n_h(s) = \max_a \hat{Q}^n_h(s, a), \quad \pi^n_h(s) = \arg \max_a \hat{Q}^n_h(s, a), \forall s$$

Key lemma 1: optimism — our bonus is large enough s.t. $\hat{V}^n_h(s) \geq V^*_h(s), \forall s, h$

Key lemma 2: regret decomposition:

Regret at iter $n = V^*_0(s_0) - V^n_0(s_0) \leq \hat{V}^n_0(s_0) - V^n_0(s_0)$
Key Intuition behind the theorem:

VI at episode n under \(\{ \hat{P}^n_h \}_h \) and \(\{ r_h + b^n_h \}_h \)

\[
\hat{V}^n_H(s) = 0, \forall s \quad \hat{Q}^n_h(s, a) = \min \left\{ r_h(s, a) + b^n_h(s, a) + \hat{P}^n_h(\cdot | s, a) \cdot \hat{V}^n_{h+1}, H \right\}, \forall s, a
\]

\[
\hat{V}^n_h(s) = \max_a \hat{Q}^n_h(s, a), \quad \pi^n_h(s) = \arg \max_a \hat{Q}^n_h(s, a), \forall s
\]

Key lemma 1: optimism — our bonus is large enough s.t. \(\hat{V}^n_h(s) \geq V^*(s), \forall s, h \)

Key lemma 2: regret decomposition:

Regret at iter \(n = V^*_0(s_0) - V^n_0(s_0) \leq \hat{V}^n_0(s_0) - V^n_0(s_0) \)

\[
\leq \sum_h \mathbb{E}_{s, a \sim d^n_h} \left[b^n_h(s, a) + (\hat{P}^n_h(\cdot | s, a) - P^*_h(\cdot | s, a))^\top \hat{V}^n_{h+1} \right]
\]
Key Intuition behind the theorem:

VI at episode n under $\{\hat{P}_h^n\}_h$ and $\{r_h + b_h^n\}_h$

$\hat{V}_H^n(s) = 0, \forall s$
$\hat{Q}_h^n(s, a) = \min \left\{ r_h(s, a) + b_h^n(s, a) + \hat{P}_h^n(\cdot | s, a) \cdot \hat{V}_h^{n+1} \right\}, \forall s, a$

$\hat{V}_h^n(s) = \max_a \hat{Q}_h^n(s, a), \quad \pi_h^n(s) = \arg \max_a \hat{Q}_h^n(s, a), \forall s$

Key lemma 1: optimism — our bonus is large enough s.t. $\hat{V}_h^n(s) \geq V^*_h(s), \forall s, h$

Key lemma 2: regret decomposition:

Regret at iter $n = V^*_0(s_0) - V_0^n(s_0) \leq \hat{V}_0^n(s_0) - V_0^n(s_0)$

$\leq \sum_h \mathbb{E}_{s, a \sim d_h^n} \left[b_h^n(s, a) + (\hat{P}_h^n(\cdot | s, a) - P^*_h(\cdot | s, a))^\top \hat{V}_h^{n+1} \right]$

If π^n is suboptimal, i.e., $V^*(s_0) - V_{\pi^n}(s_0)$ is large, then π^n must visit some (s, a) pairs with large bonus $b(s, a)$ or wrong $\hat{P}(\cdot | s, a)$
Summary

1. Basics of MDPs:
 Bellman Equation / Optimality; two planning algs: Value Iteration and Policy Iteration

2. Policy Gradient:
 Vanilla PG formulation & Natural Policy Gradient with their global convergence

3. Efficient exploration in tabular MDPs:
 The UCB-VI algorithm via the principle of optimism in the face of uncertainty