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Exercises for Natural Policy Gradient

In this exercise, we consider the discounted Markov Decision Process (S,A, r, P, γ) where the initial distribution
and exploratory distribution coincide. We refer to both as ρ ∈ ∆(S). Recall that for a policy π we use dπρ ∈ ∆(S)
to denote the discounted state visitation distribution for π starting from ρ:

dπρ (s) := (1− γ)

∞∑
t=0

γt Pr(st = s | s0 ∼ ρ, π). (1)

We also sometimes overload this notation to denote a distribution over states and actions, where the action is always
sampled from π.

We focus on the Natural Policy Gradient (NPG) algorithm with tabular softmax parametrization, that is

πθ(a | s) =
exp(θs,a)∑

a′∈A exp(θs,a′)
, (2)

where θ ∈ R|S||A| are the parameters. Recall that the NPG update is given by

θ(t+1) = θ(t) + ηFρ(θ
(t))†∇θV (t)(ρ), (3)

Fρ(θ) = Es∼dπθρ Ea∼πθ(·|s)
[
(∇θ log πθ(a | x))(∇θ log πθ(a | x))>

]
, (4)

and V (t)(ρ) is the value of policy πθ(t) from initial distribution ρ. Throughout we use π(t) = π(θ(t)), A(t) = A(π
θ(t)

)

to simplify the notation.

1 Closed form NPG update

Q1: Prove the following proposition verifying a closed form for the NPG update.

Proposition 1. For NPG with the softmax parametrization in (2) we have that

π(t+1)(a | s) ∝ π(t)(a | s) · exp(ηA(t)(s, a)/(1− γ))

Zt(s)
, (5)

where Zt(s) is a normalizing factor that ensures that π(t+1)(· | s) is a distribution.

It may be helpful to view A(t)(·, ·) as a vector in R|S||A| and instead show that

θ(t+1) = θ(t) +
η

1− γ
A(t)(·, ·) + ηv (6)

where vs,a = vs,a′∀s, a, a′ is a state-dependent but action-independent offset. Observe that the result follows
immediately from (6). Also note that A(t)(s, a) = Q(t)(s, a)−V (t)(s), where V (t) is state-dependent only, so we can
also write the algorithm using the Q functions.
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2 Performance difference lemma

The performance difference lemma is one of the cornerstone technical results in RL theory. It provides a mechanism
for comparing two policies via one-step differences and has an elegant form in terms of the advantage function.

Q2: Prove the following lemma.

Lemma 2. Let π1, π2 be arbitrary policies. Then

V π1(ρ)− V π2(ρ) =
1

1− γ
E(s,a)∼dπ1ρ [Aπ2(s, a)] . (7)

3 NPG regret analysis

Owing to (6) and by absorbing the (1−γ) term into the learning rate. It is natural to consider using an approximation
to the advantage function given by a vector w ∈ R|S||A|. Informally, we want

A(t)(s, a) ≈ 〈w(t),∇θ log π(t)(a | s)〉.

Then, we can simply perform the updates θ(t+1) ← θ(t) + ηw(t). This corresponds to NPG, because, with the
tabular softmax representation, the gradient term is es,a −

∑
a′ es,a′π

(t)(a′ | s). This means that we want w(t) to
be equal to A(t) up to a state-dependent offset. In fact, we can see that if we set w(t)(s, a) = Q(t)(s, a) then the
above is satisfied with equality.

To capture both approximation and estimation errors, we define

errt := Es∼dπ̃ρEa∼π̃(·|s)
[
A(t)(s, a)− 〈w(t),∇θ log π(t)(a | s)

]
. (8)

Here π̃ is some reference policy that we will compete with in our analysis, e.g., it could be the optimal policy π?.

Q3: Prove the following regret lemma using Lemma 2.

Lemma 3 (NPG Regret Lemma). Fix comparison policy π̃ and assume that log πθ(a | s) is β smooth w.r.t., `2
norm:

∀θ, θ′, s, a : | log πθ′(a | s)− log πθ(a | s)−∇ log πθ(a | s)(θ′ − θ)| ≤
β

2
‖θ′ − θ‖22. (9)

Assume that supt
∥∥w(t)

∥∥
2
≤ W and that errt is defined as in (8). Then the NPG iterates, given by θ(t+1) ←

θ(t) + ηw(t), satisfy

min
t<T

{
V π̃(ρ)− V (t)(ρ)

}
≤ 1

1− γ

 log |A|
ηT

+
ηβW 2

2︸ ︷︷ ︸
MW style regret decomposition

+
1

T

T−1∑
t=0

errt

 . (10)

Remark 4. In the solutions document, we sketch how to obtain a complete analysis for NPG, using this regret
lemma as a starting point. The final steps highlight how this method relies on the distribution ρ for providing suitable
coverage over the state space.
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Exercises for UCB-VI

We will consider the standard finite horizon MDP in this case M = (S,A, H, r, {Ph}, µ0), where µ0 ∈ ∆(S) is the
initial state distribution, r : S ×A 7→ [0, 1], and Ph : S ×A 7→ ∆(S). For simplicity, we assume reward r and initial
distribution µ0 are known, but the transitions {Ph}H−1h=0 are unknown and need to be learned.

Throughout the section, we denote V πh (s) as the expected total reward of the policy π starting at state s at time
step h. We denote the expected total reward for policy π as V π := Es∼µ0

V π0 (s). We denote dπh ∈ ∆(S × A) as the
state-action distribution of the policy π at time step h.

1 Proving Simulation Lemma

We start by proving the classic simulation lemma, which concerns the following important question: given a policy
π, and two different rewards and transition dynamics {rh, Ph}H−1h=0 and {r̂h, P̂h}H−1h=0 , what is the difference between

the policy’s value under {rh, Ph}H−1h=0 and under {r̂h, P̂h}H−1h=0 .

Q1: Prove the following lemma.

Lemma 5 (Simulation lemma). Consider a policy π : S 7→ ∆(A) and two models {rh, Ph}H−1h=0 and {r̂h, P̂h}H−1h=0 .

Let V πh and V̂ πh denote the value function under {rh, Ph}H−1h=0 and {r̂h, P̂h}H−1h=0 respectively (assume that the starting
distribution µ is the same in both models). Then we have:

V π0 − V̂ π0 =

H−1∑
h=0

Es,a∼dπh

[
rh(s, a) + Es′∼Ph(s,a)V̂

π
h+1(s′)− r̂h(s, a)− Es′∼P̂h(s,a)V̂

π
h+1(s′)

]
.

2 Optimism

Let us prove the following general result which is not tied to the tabular setting. Suppose have learned transitions
based on data, say, {P̂h}H−1h=0 , and in addition, we have some uncertainty measure bh : S × A → R+ for our model
satisfying

∀h, s, a :
∣∣∣Es′∼P̂h(·|s,a)V ?h+1(s′)− Es′∼Ph(·|s,a)V

?
h+1(s′)

∣∣∣ ≤ bh(s, a) (11)

Here V ? is the optimal value function in the true MDP, with dynamics P . Suppose we perform value iteration
inside the “bonus augmented MDP” M̃ := (S,A, {r + bh}, {P̂h}, H, µ0), i.e.,

V̂H(s) := 0,∀s;

Q̂h(s, a) := min{H, r(s, a) + bh(s, a) + Es′∼P̂h(·|s,a)V̂h+1(s′)};

V̂h(s) = max
a

Q̂h(s, a).

And we define π̂h(s) := argmaxa Q̂h(s, a).

Q2: Prove the following statement.

Lemma 6 (Optimism). Assume (11) holds. Let Q?h(s, a) be the optimal Q function of the original MDP M. Then

(Q̂h, V̂h) are pointwise optimistic, that is Q̂h(s, a) ≥ Q?h(s, a),∀s, a, and V̂h(s) ≥ V ?h (s),∀s.

3 Regret Decomposition

Next, we will condition on the event in (11) being true and consider the regret of the policy π̂ computed by value

iteration in the bonus-augmented model M̃.
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Q3: Using the fact that V̂h(s) is an optimistic estimate, prove the following statement.

Lemma 7 (Regret Decomposition). The regret is upper bounded as:

V ? − V π̂ ≤
H−1∑
h=0

Es,a∼dπ̂h

[
bh(s, a) +H‖P̂h(s, a)− Ph(s, a)‖1

]
.

Observe that the proof is quite similar to that of the simulation lemma.

4 Proving UCB-VI has valid bonus

Let us consider a particular iteration t. Recall that in UCB-VI, we set the reward bonus bt,h(s, a) = min{H, 2H
√

ln(SAHT/δ)
Nt,h(s,a)

}.
And recall that we estimate the transition operator P̂t,h(s′|s, a) using the observed frequencies.

Q4: Prove the following result regarding the estimated model’s error.

Lemma 8. With probability at least 1− δ, for all t ∈ [N ], for all s, a ∈ S ×A, and for all h ∈ [H] we must have:∣∣∣Es′∼P̂t,h(·|s,a)V ?h+1(s′)− Es′∼Ph(·|s,a)V
?
h+1(s′)

∣∣∣ ≤ bt,h(s, a)∥∥∥P̂t,h(· | s, a)− Ph(· | s, a)
∥∥∥
1
≤ 2

√
S ln(SAHN/δ)

Nt,h(s, a)
.

Note that the first inequality in the above lemma indicates that with bt,h(s, a) as above, performing VI inside
the bonus augmented model gives us an optimistic policy, via Lemma 6.

5 Concluding the proof

Now conditioned on the event in Lemma 8 being true, we can proceed to conclude the proof as follows. Using
optimism and the fact that V̂t,0(s) ≥ V ?0 (s), we immediately have the following upper bound for the total regret
across N iterations,

RegretN =

N−1∑
t=0

V ? − V πt .
N−1∑
t=0

H−1∑
h=0

Es,a∼dπth

[√
ln(SAHN/δ)

Nt,h(s, a)
+H

√
S ln(SAHN/δ)

Nt,h(s, a)

]
(12)

. H

N−1∑
t=0

H−1∑
h=0

Es,a∼dπth

[√
S ln(SAHN/δ)

Nt,h(s, a)

]
(13)

Q5: The last step to conclude the proof is to prove the following lemma

Lemma 9 (Confidence sum). We have:

T−1∑
t=0

H−1∑
h=0

√
1

Nt,h(st,h, at,h)
. H
√
SAN.

Hint: Use the fact that Nt+1,h(st,h, at,h) = Nt,h(st,h, at,h) + 1, since (st,h, at,h) is visited at time step h of the
tth episode.

Note that we cannot directly plug in the above result into the regret formulation yet, as the regret involves
expectations under dπth . However, the difference between can be bounded by a standard martingale difference
argument, which we omit from this exercise.
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